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Abstract  

This report describes the underlying principles and goals of the Sandia ASCI Verification and Validation 
Program Validation Metrics Project. It also gives a technical description of two case studies, one in 
structural dynamics and the other in thermomoechanics, that serve to focus the technical work of the project 
in Fiscal Year 2001. 
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Executive Summary 
Recent developments have dictated fundamental changes in the processes associated with 
the design, certification, and management of the United States nuclear weapons stockpile. 
For example, one of the most important effects of these changes is the accelerated growth 
of the application of large-scale computational modeling and simulation in nuclear 
weapons certification processes. The DOE Accelerated Strategic Computing Initiative 
(ASCI) program is broadly tasked with developing the methodologies, computing 
hardware, and computational software for enabling computational science and 
engineering (CS&E) that can be confidently used for high-consequence U. S. nuclear 
stockpile applications.  

When considering the role of computational modeling and simulation in stockpile 
applications, an issue of paramount concern is our ability to assess and forecast the 
expected accuracy of complex computational predictions. The response of Sandia 
National Laboratories to this issue has been to initiate the Validation Metrics Project 
(VMP). The VMP is funded under the DOE Accelerated Strategic Computing Initiative 
(ASCI) Verification and Validation (V&V) program at Sandia. The goal of the VMP is to 
develop and apply quantitative model validation methodologies to measure and improve 
confidence in ASCI CS&E. As such, we view the VMP as an important component of 
achieving success for the ASCI program at Sandia. The purpose of this document is to 
describe the underlying framework for the general problem of validation of code 
applications, the approach taken to address the issues comprising it, and the project goals 
for the VMP. 

There are four essential elements in the process of applying CS&E in high-consequence 
applications.  

(1) We must compare computational models with experimental data, either existing or to 
be gathered in a directed manner. Such comparisons, of necessity, require dealing 
with uncertainty in both the experimental data and the computational model.  

(2) We must develop rigorous, quantitative measures (metrics) for assessing the 
confidence, or lack thereof, that results from the experimental data – model 
comparison element (1). This element is also directly associated with model 
qualification activities, where the canonical question that must be answered is: “Is the 
comparison of the model with the data good enough to support the intended 
application of the model?”  

(3) We must predict model error in application regimes different than those covered by 
the data comparisons associated with elements (1) and (2). Prediction of error is 
clearly important for high-consequence applications.  

(4) We must develop methodologies for forecasting uncertainty in our prediction of the 
model error in element (3). 

A more extensive discussion of features of these elements is given in the main body of 
this report. In our view, each of these elements requires research and development. The 
VMP emphasis is on the first two elements – comparison and confidence metrics – for 
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fiscal year (FY) 2001. The latter two elements – predicting error and forecasting 
uncertainty– will receive greater attention as the project evolves, in particular in FY 2002. 

We have chosen to focus the work of FY 2001 on two weapons-related case studies. Such 
case studies are natural vehicles for researching, prototyping, applying, and generalizing 
methodologies. The objectives of both case studies is to develop useful, quantitative 
comparison methodologies for the associated experimental data and computational 
models in the presence of uncertainty; and to quantify model application confidence 
resulting from these types of comparisons.  

The first case study centers on the subject of structural random vibration that is of interest 
in the current Stockpile-to-Target-Sequence (STS) normal environment requirements. 
This class of application offers a number of advantages, including the fact that there is a 
long history of certification using random vibration STS criteria makes it a well-
understood problem, and quantitatively characterized validation data are available or can 
be measured. 

The second case study involves analyses surrounding the time-dependent thermal 
decomposition of hydrocarbon foams and their influence on STS abnormal environment 
analyses. This application is notable in that it has complex, less well-characterized 
validation data associated with it than is the case for the structural dynamics case study.  

These case studies usefully encompass a variety of issues associated with validating the 
application of CS&E models for stockpile management applications at Sandia. Complete 
descriptions of these case studies are provided in the main body of this report. 

The major deliverables for the VMP in FY 2001 are documentation and 
recommendations. This report represents the first of the expected deliverables. We will 
also document the approaches and results of the work on the two case studies. In addition, 
we plan to document a set of guidelines for designing and performing validation 
experiments in CS&E that resonate with the technical aspects of this project. Finally, we 
will document lessons-learned from the work of FY 2001, as well as a set of 
recommendations for the next phases in the project based on the work performed in FY 
2001. These recommendations will stress, of course, factors that we believe have the 
greatest influence on generalizing the knowledge and experience developed under this 
project to the larger ASCI CS&E capability at Sandia. 
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1. Introduction 
The Department of Energy’s (DOE’s) Accelerated Strategic Computing Initiative (ASCI) 
is designed to develop high performance computational tools and models to help manage 
the safety and reliability of the enduring nuclear weapon stockpile.  This effort is the 
essence of the Science-Based Stockpile Stewardship (SBSS) program.  For new 
computational tools to be used with confidence by weapon designers and decision-
makers, in lieu of or as a supplement to physical testing, a sound and viable verification 
and validation program (V&V) is required.  The goal of the ASCI V&V program at 
Sandia (Pilch et al., 2000a) is to characterize the predictive capability of ASCI 
computational tools in a credible manner while remaining within the constraints of 
available funding resources.  

The Validation Metrics Project (VMP), one of While several elements of the Sandia 
V&V program, focuses on validation. Validation is also the emphasis of this report. 
Validation of a computer model for a given application is defined in the DOE Defense 
Programs (DOE/DP) ASCI Program Plan (DOE, 2000) as: 

 

Validation – The process of determining the degree to which a computer model is 
an accurate representation of the real world from the perspective of the intended 
model applications. 

 

The design and implementation of the validation process are not well defined, either in 
the ASCI Program Plan (DOE, 2000) or the Sandia V&V planning guidance (Pilch, et al., 
2000a).  The Sandia ASCI V&V program created the VMP to develop methods for 
gauging “the degree to which a computer model is an accurate representation of the real 
world ….”  

In the near term, the VMP is directly aimed at supporting achievement of the ASCI FY 
2002 Level 1 Milestone, VV-2.1 (DOE, 2000): “Demonstrate initial validation 
methodology …for normal and abnormal Stockpile-to-Target-Sequence (STS) 
environments behavior.” This is meant to deliver one or more technical methodologies 
that support scientific assessment of the predictive capability of one or more Sandia ASCI 
codes for their defined applications. The primary focus of Sandia ASCI code applications 
is technical support of weapon systems projects for normal, hostile, and abnormal 
environments.  

The validation assessment methodologies developed and recommended as a result of this 
project are intended to withstand critical scrutiny. Such scrutiny will likely include peer 
review processes originating within weapon system programs at Sandia. Deciding 
whether the predictive capability of codes for specific applications measured by the 
means developed in this project is appropriate or sufficient for the required application is 
beyond the scope of this project. Another element of the Sandia V&V program is 
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required. This element, code qualification, along with the peer review process formulated 
by the Sandia V&V program (Pilch, et al., 2000b), the weapons engineering certification 
campaign (Campaign 6), as well as other weapons program elements, will ultimately 
decide when a code has sufficient predictive capability for a specific application. 
Development of useful validation metrics, whether by the VMP or by other means, is 
therefore a necessary condition to perform code qualification, but not a sufficient 
condition. 

The VMP builds on a body of previous work (Paez, et al., 1996; Barney, et al., 1997; 
Hunter, et al., 1997; Perez, et al., 1997), as well as work performed in FY 2000 under a 
Sandia V&V program element called “Validation methodologies” (Blackwell et al., 2000; 
Dowding, 2001a,b; Easterling, 2001a,b,c; Hills and Trucano, 1999, 2001a, and 2001b).  
Major differences between the Validation Methodologies project and the current VMP are 
(1) increased focus on the FY 2002 ASCI V&V milepost; and (2) a more deliberate basis 
for generalizing the executed work and broadening its technical impact on the Sandia 
V&V program. The FY 2001 work performed under the VMP must lead to additional 
work to be performed in FY 2002 to achieve the stated milepost. 

In our opinion, previous work has established some basic ideas and candidate approaches 
to use in assessing a code’s predictive capability.  The next step is to test these ideas, and 
either refine and more generally apply them, or reject them in favor of other approaches. 
Experience applying these conceptual ideas will allow us to refine them or reject them. It 
is with this in mind that the core FY 2001 VMP tasks are two case studies. The first is 
related to weapons simulations in normal STS vibration environments. We call this the 
Structural Dynamics Case Study. In the second case study, we will study the problem of 
foam decomposition under thermal states related to fire relevant to abnormal STS 
environments. We call this work the Foam Decomposition Case Study. 

The case studies focus the technical content of this project. Differences in the type and 
quality of the data in each case study, as well as differences in the anticipated use of the 
computational models in each case, provide wide scope for formulating and 
implementing technical validation methodologies. Both case studies are believed to offer 
appropriate opportunities for technical progress. Results of work on these case studies are 
the most important product of this project and will be carefully documented. 

Additionally, elements of this project are aimed at generalizing the case studies. This 
white paper lays out principles and constraints that are likely to be required for any 
technically focused validation study for application of Sandia ASCI codes. We will also 
develop a more precise picture of the broad range of data that must be encompassed in 
performing code application validation for STS environments applications. This 
information will be documented in a more rigorous work product that will develop Sandia 
V&V program guidelines for appropriate validation data characteristics and requirements 
for comparison of codes with such data. 

The path forward for the VMP is also important. Our recommended path forward will be 
based on a detailed accounting of lessons-learned from FY 2001. We will specifically 
discuss the applicability of the methodologies investigated in the case studies to further 
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validation studies based on data presented in our larger picture of validation data 
available at Sandia. 

In the remainder of this report we will first develop a motivation for studying the subject 
of validation metrics in Section 2. In Section 3 we will present a discussion of the 
technical challenges that lie at the core of successful execution of this project. It is 
important for the reader to note that this material does not serve as a blueprint for the 
technical approaches that are most favored by the VMP. Rather, our emphasis here has 
been on elucidating ideas that convey the rationale for viewing work in the area of 
validation metrics as having a research and development component, as well as an 
applications component. Sections 4 and 5 describe our planned case studies, including a 
detailed description of the planned work and the intended outcomes. We conclude in 
Section 6 with a description of the success metrics for evaluating this project and the 
anticipated path forward of the VMP. A summary and some conclusions are presented in 
Section 7. 

Note to the reader: Unless otherwise stated, “model” is this report always means the 
computational code and the physics models it implements, as well as the input necessary 
for performing calculations (such as the mesh definition, choice of material parameters, 
and computational parameter settings). 

2. Goals and Approach 

2.1 Goals 

The main goal of the ASCI V&V program is to establish confidence in modeling 
predictions of ASCI simulation codes for application to the Stockpile Stewardship 
Program.  In the context of two case studies, the VMP supports achieving this goal by 
developing and testing systematic means by which (1) code predictions should be 
compared with data and (2) assessment of code application predictive capabilities rooted 
in these comparisons should be performed and communicated.  The project will 
generalize the results of the case studies to provide guidelines for: 

 the design and conduct of suites of model validation experiments and 
computations;  

 the comparison of experimental and computational results to evaluate 
predictive capability; and 

 the extension of these results to statements about the predictive capability of 
computational models in untested situations. 

The decision to apply these guidelines systematically in the Sandia ASCI V&V program 
is, of course, beyond the scope of this project. 

2.2 Motivation.   

The emphasis of the ASCI program is on computational prediction. Therefore, users of 
computational predictions, from weapon designers to weapons program decision-makers, 
need to be provided with information on how accurate the prediction is and on what basis. 
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In short, the most important, and likely hardest, question we must ask is: What is the 
quantitative assessment of our confidence in the prediction? An example of a desirable 
statement that illustrates a useful way of answering this need is: “Based on our 
understanding of the underlying physics, our ability to translate that understanding into a 
computational code, and our comparative analysis of an extensive suite of experiments 
and computations, we are confident that actual system response will differ from the 
computational prediction by no more than 20%.”  Whether such a statement can ever be 
made, or whether a soft approximation to such a statement can ever be made, is at issue 
and certainly a major subject of study for the VMP. Such statements of predictive 
capability, or approximations to them, provide the necessary frame of reference against 
which a computational prediction can be compared to a weapon program requirement.  It 
is very important to understand how close we might be able to come to providing such 
information for high consequence applications of ASCI codes. Confidence in the 
predictions derived from simulations of weapon performance in normal, abnormal, and 
hostile environments supporting STS requirements demands a credible, convincing basis 
for quantifying predictive capability. It is hard to imagine a significant weakening of this 
position while still claiming high impact for ASCI computational predictions. 

2.3 Philosophy.   

Confidence we have in computational predictions comes predominantly from 
comparisons of computations with experiment and/or test data.  We use the term model 
validation to describe this comparison. Directed experimental programs must be 
conducted more or less explicitly for this purpose, along with historical data when 
available. Model validation experiments may range from single-physics, tightly controlled 
laboratory-scale experiments for a single phenomenon, through of combined or coupled 
physical tests, to very complex and expensive system-level multi-physics tests.   

As we progress through this spectrum of potential validation experiments, test units may 
vary from simple geometric shapes of single materials to complex assemblies with many 
materials.  At the same time, the acquired experimental test data vary from being very 
simple and well characterized to very complex and poorly characterized. At each level of 
complexity, however, the intent for model validation is that comparisons of 
computational predictions to experimental results provide useful information on current 
accuracy and future predictive capability of the model. The basic underlying philosophy is 
that the more satisfactory the comparisons are observed to be, the greater the resulting 
confidence one will have in the model in specified applications.  While this general 
philosophy and approach are easily recognized to those who have performed model 
validation, constructive and quantitative guidelines for the systematic implementation of 
the process are not well characterized.   

The Sandia V&V planning guidelines (Pilch, et al., 2000a) distinguished three 
increasingly complex categories of model validation, along with a proposed model 
accreditation category. These categories reflect increased complexity of the validation 
activity from a single phenomenon, through simply coupled phenomena, to fully coupled 
phenomena of the complexity of the intended application. In this report, we find it 
convenient to distinguish qualitatively different validation problems that lie at opposite 
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ends of the experimental spectrum. The first problem is phenomenon-centric validation 
(another useful choice of words is unit-centric validation). The second problem is 
application-centric validation (or system-centric validation). Success in application-
centric validation requires success in phenomenon-centric validation as a necessary 
precondition. Quantitative validation methodology to support the solution of both 
validation problems is needed, as we will now explain. 

The goal of phenomenon-centric validation is to address the degree to which a model 
adequately represents a single physical phenomenon for the application of interest. The 
phenomenon itself may be well characterized experimentally or it may not. The key point 
is that validation experiments supporting phenomenon-centric validation are designed to 
isolate that particular phenomenon. It is important to ensure consistency between the 
experiment and the model so that the experiment satisfies the basic assumptions and 
application conditions of the model. Generally, such validation experiments are also 
designed to involve relatively simple geometries and materials. The acquired data are 
expected to be simpler than those associated with the driving application. The validation 
process and needed metrics in this case are focused on determining how accurately a 
model predicts the isolated phenomenon as represented by the defined validation 
experiments and their resulting data.  

Application-centric validation measures the accuracy with which a model represents an 
intended realistic application. The applications of interest to Sandia typically have several 
phenomena of interest that are coupled to a greater or lesser degree. Validation 
experiments in this case typically must be multi-phenomena experiments or tests, with 
more complex geometries and materials than the experiments that support phenomenon-
centric validation. We expect fewer useful data to be available for application-centric 
validation and these data will be more complex than arise in phenomenon-centric 
validation (possibly exhibiting complex space-time correlations that may not be present in 
simpler validation problems). The model calculations required for comparison with such 
experiments are also typically far more complex than those required for performing 
phenomenon-centric validation. The application-centric validation process and needed 
metrics focus on characterizing how accurately the model predicts the complicated and 
coupled phenomena representative of a driving application. This is a far more daunting 
task than phenomenon-centric validation, which is not to claim that phenomenon-centric 
validation is easy. It properly includes phenomenon-centric validation as one of its tasks. 
Unfortunately, it is often the case that the large-scale experiments or tests that serve the 
role of validation experiments for application-centric validation are intended only to 
support qualitative system design or qualification decisions. In such a case, these tests are 
sometimes not even properly defined as model validation experiments (for example, the 
data that may be collected could be impossible to compare with the model under study), 
let alone capable of providing the kind of quantitative data that are required for model 
validation.  

A key issue for research is how to properly integrate these two distinct validation 
problems. For example, the two levels of associated validation experiments, along with 
any intermediate levels, cannot be performed in isolation. Certainly for the physical 
phenomena underlying the application phenomenon-centric validation is a critical 
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precursor to application-centric validation. Each level of validation contributes to the 
assessment of the predictive capability of the model for the intended application. 
Phenomenon-centric validation should be defined by the ultimate application need for the 
model and the resulting demands of application-centric validation. This view has been 
stressed in the Sandia V&V guidelines (Pilch, et al., 2000a). Effective links between 
phenomenon-centric and application-centric validation, such as specification of 
application relevant parameter ranges, conditions, and accuracy requirements that 
constrain the associated phenomenon-centric validation activities, are important for 
ultimate success of application-centric validation. For example, while it may be 
reasonable from a phenomenon-centric perspective to conduct experiments pertaining to 
material performance at 300oC, if the application requirement pertains to performance at 
750oC, then the phenomenon-centric validation experiments may have little value relative 
to application-centric validation. 

It is our observation that a majority of current Sandia directed validation efforts are 
phenomenon-centric, despite the emphasis on application-centric validation that is in the 
overall Sandia V&V program (Pilch, et al., 2000a). While this emphasis is consistent with 
a philosophy of performing tasks that are technically simpler prior to performing more 
complex tasks, the fact remains that an approach that is focused only on phenomenon-
centric validation will not likely be successful if the resulting efforts are divorced from 
the required applications. We also note that there are situations where phenomenon-
centric validation experiments can be performed while applications-centric validation 
experiments cannot, as well as vice versa. An important goal of the VMP is to develop 
understanding of how to properly link these two canonical validation problems and to 
explore methodologies for achieving application-centric validation that can be 
generalized. 

2.4 Process 

The general goal of the VMP, as stated above, is to define the process by which the 
predictive capability of computational models can be assessed from model-experiment 
comparisons.  To reiterate, by predictive capability, we mean the potential difference 
between a computationally predicted outcome for a given situation (e.g., weapon 
subjected to a specified shock at some point in the Stockpile-to-Target Sequence) or for a 
given class of situations (e.g., weapon deliveries within defined velocity and attitude 
envelopes) and the outcome of the actual event or events.  Obviously, prediction cannot 
be perfect and we have no expectations that it has to be in any case we care about.  A 
large number of random and systematic effects, as well as the inherent approximations of 
mathematical models, intervene to make nature differ from computation. Phenomena 
occur in nature that are not captured in a computational model.  But, with the right set of 
experiments and computations and with suitable analysis methods, supported by an 
understanding of the underlying phenomena, we may be able to measure and bound the 
cumulative magnitude of these effects and thus measure predictive capability. 

Figure 1 displays our view of the overall process of measuring or estimating model 
predictive capability and using that information to make stockpile stewardship decisions.  
The top ellipse – “System Environments and Performance Requirements” – encompasses 
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the intended application of the computational model. There, system requirements specify 
various performance goals and outcomes for given scenarios and environments. The 
computational model will be applied to predict these system performance outcomes in the 
specified scenarios. The simplicity of the diagram masks an elaborate and complex 
interaction between the weapon program customer that must use the computational 
prediction and the personnel that develop the prediction. Comparing the prediction to the 
system requirements fundamentally demands a yardstick – a metric – for measuring 
uncertainty of the prediction, as well as suitably quantitative requirements for the 
application of this metric. Neither of these is a trivial task. Model uncertainty is depicted 
in Figure 1 by the shaded ellipse surrounding the prediction ellipse. Requirements and 
scenarios are depicted as crisply defined, a rather strong simplification of the reality in 
some applications.  

 

 

Figure 1.  A system view of the process of quantification of predictive capability for 
complex computational models illustrates the underlying difficulty. 

 

To develop a yardstick for comparing computational predictions to system requirements, 
a suite of validation experiments and their attendant uncertainty, corresponding 
computations, and their comparison must be conducted. The bottom ellipse in Figure 1 – 
“Testable Configurations and Environments” – suggests the key elements required to do 
this. The state of our current information is included in this region. In addition, the 
process for generating additional information and an appropriate collection of validation 

Computational 
Model

Experiment 
Outcomes

Set of System 

Scenarios

Suite of Model 
Validation 

Experiments
Observed 
Differences 
(Prediction 
Errors)

Computational 
Predictions of 
Experimental 

Outcomes

System Environments and Performance 
Requirements

Testable Configurations and Environments

Computational 
Predictions of 
System Outcomes

Requirements 

Met?

NO YES

Prediction 
Error Analyses

INFERENCE

Quantified Prediction 
Uncertainty



 

 17

data is schematically depicted. This information provides, first, an evaluation of modeling 
fidelity in the tested situations.  (How well predictive capability is evaluated is clearly 
dependent on the definition and conduct of the validation process.) Second, and most 
importantly, the ensemble of observed differences that constitute current experience must 
serve as the quantitative basis for an inference about model prediction capability in the 
system applications of interest in the upper ellipse. This, in a nutshell, is the major 
technical problem underlying any effort to develop useful “validation metrics.” 

A more detailed view of the process elements centered in Fig. 1 around the transition 
from “Inference” to applying the computational predictions is shown in Figure 2. System 
requirements, such as that the system shall function successfully under specified delivery 
conditions, lead to scenarios that capture those requirements. Based on our scientific 
understanding and computational capabilities, we develop a computational model for 
predicting the outcomes of these scenarios. To evaluate the predictive capability of this 
model, we need to conduct a validation test program.  This validation program, consisting 
of a suite of experiments (as discussed in section 2.3) and corresponding computational 
simulations of those experiments, is constrained and shaped by the scenarios, the 
capabilities of the model, and the experimental capabilities.  

For each experiment in the program, calculations mirroring the experiment must be 
performed.  There can be major compatibility issues to resolve in accomplishing this, 
even at the level of phenomenon-centric validation experiments. We will refer to this 
issue as alignment, as in “proper alignment of model computations and validation 
experiments.” While it is beyond the scope of the current report to discuss this issue in 
much detail, we will provide additional insight into what this means below.  

Assuming that the alignment between experiment and calculation is good enough we can 
meaningfully compare and analyze the differences between the calculations and the 
experiment. This process provides quantitative information about the predictive capability 
of the model for the phenomena conditions and application constraints at which the 
validation experiments have been conducted.  We must then seek to draw inferences 
about the model predictive capability for the scenarios by which system performance 
relative to requirements can be judged, typically not fully covered (or addressed at all) in 
existing experiments. A cycle of inference is thus created. If predictive capability is 
judged satisfactory, by criteria whose specification may be difficult in particular 
applications, the model is deemed ready to contribute to the decision processes.  If 
predictive capability is judged unsatisfactory, we must begin again and examine 
everything from system design and underlying requirements to computer model to 
validation test program and discover opportunities for improvement. Applying this 
process, it may well be determined that the model predictive capability is insufficient for 
the intended application or, possibly, that an understanding that the predictive capability 
is sufficient cannot be formed. The early phases of the VMP, in particular the case studies 
described in Sections 4 and 5, do not directly address the question of whether prediction 
capability associated with the models under study is sufficient for a specific task. 
However, this question is of implicit concern to the project. 

 



 

 18

 

 

 

Figure 2. The process steps and decision elements required for quantifying 
predictive capability from validation activities. 
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2. Sandia Defense Programs scenarios governing the intended application of the 
models in the case studies must be defined. 

3. Models in the case studies must be at a sufficient level of sophistication that 
the data comparison exercises will make sense. We assume that this 
requirement is implicitly satisfied by the choice of ASCI codes as appropriate 
models for us in the case studies. 

4. Experiments compatible with calculations will be (have been) performed 
within the timeframe of the VMP – i.e., during the first three quarters of FY 
2001. 

5. Experimental data appropriate for comparison to model predictions must be 
available or acquired during the course of the case study. 

6. Appropriate comparison methods and methodologies for assessing the 
resulting confidence must be available for investigation in the case studies.  

7. While the decision box “OK” in Figure 2 requires more than validation, as 
argued in the Introduction, the case studies should provide suitable 
opportunities for determining what elements of validation metrics are 
necessary for model qualification processes. 

In this report we will discuss the impact of these requirements on the VMP. Items four, 
five, and six above are intended to enforce a sufficient level of model – experiment 
alignment to insure that the process of comparison is not vacuous. The individual case 
study descriptions in Sections 4 and 5 are specifically designed around these constraints. 
An expanded discussion of the issues involving model, data, and comparisons is given 
below in Section 3. 

We now emphasize one more time that underlying all of the work proposed for the VMP 
are the elements in Figure 2 labeled “Requirements” and “Scenarios.” These are critical to 
our ultimate ability to qualify our predictive confidence in a model for a defined 
application. A great deal of work is required to develop these requirements and scenarios 
to the level of detailed needed for the process shown in Figure 2. In Appendix A we give 
a preliminary discussion of some of the issues involved in mapping requirements and 
scenarios defined by the weapons program at Sandia into a usable set of requirements and 
constraints for the predictive confidence assessment process in Figure 2 for an abnormal 
environments application. This is primarily aimed at introducing the reader to the 
difficulties. 

3. Technical Issues 

3.1 Introduction 

Figures 1 and 2 illustrate the role of the model validation in the overall ASCI V&V 
program.  Most of the physical and computational experimentation designed to support 
model-based prediction occurs in this stage of analysis.  A number of objectives are 
addressed through this experimentation, including those listed below:  1) Comparison of 
results from the two sources can lead an iterative process of refinements to the models, 
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experimental methods, or even to requirements and/or expectations.  Two major concerns 
in assessing the model are accuracy and predictive capability.  2)  Comparison of the 
information generated through validation experimentation to requirements can provide 
feedback clarifying the needs of, and directions for, additional experimentation.  This 
would include determination of whether or not sufficient information has been obtained 
for the decisions required in this stage of analysis.  3)  For situations where model 
performance appears adequate for the application, all information should be used to 
evaluate the model’s predictive capabilities.  A mathematical framework is introduced in 
this section that can facilitate these objectives.  Challenges involved with and methods of 
analysis for addressing these objectives are discussed. 

To discuss the wide variety of technical issues associated with validation metrics, we 
utilize a simple mathematical formalism to frame the discussion.  To start with, we 
represent a prediction generated by a computational simulation as 

),()(* φxMxy = ,     (3.1) 

where ),( φxM represents the computational model of the phenomenon of interest; x is a 
vector of model input variables, some of which could be fields (a function of space and/or 
time) in the most general case; φ is a vector of numerical parameters, some of which 
could also be fields; *y  is the model output or prediction, which could potentially be a 
vector of quantities that themselves could be fields. The variable y used below is the 
experimentally determined response of which *y is the model prediction. 

In general, the model’s input vector x describes a physical entity and the environment to 
which it is subjected for purposes of both computation and experiment.  The input vector 
x  is what enforces alignment of the model with the experiment. For the case of some 
quantities, such as dimensions, geometries, initial velocities, or specified mechanical 
loadings, the variables expressing these details clearly enter into x . Thus, x will include 
physical dimensions and environmental variables, as well as variables defining initial and 
boundary conditions.   

But, we also want to place less obvious parameters, such as material model parameters, in 
this vector. By doing this we are not assuming that the material model in the computation 
is correct in any given application. Rather, we are stating the obvious fact that if a 
material model allows us to choose between copper and iron, for example, then we should 
not choose copper when iron is used in the experiment. This is an alignment problem. We 
would certainly not expect to agree with the experiment if we allowed this confusion. 
(But the reader should note that an additional problem arises if a computational model 
happens to agree with an experiment that is not aligned with the calculation.) The 
material model quantities that allow this kind of distinguishing of materials that are also 
distinguishable in the experiment must be included in the vector x .  

In general, we expect that any material variables that are truly constitutive should be 
placed in the input vector x . Such variables uniquely identify materials both 
computationally and experimentally (or they would not be constitutive!). How accurate 
the model is that utilizes these variables is, of course, a validation question, not an 
alignment question. 
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The numerical model parameter vector φ  contains all parameters that are necessary for 
performing calculations that do not influence alignment of the calculation with the 
experiment. In short, φ  contains all other numerical model parameters that are not placed 
in x . These parameters include all parameters used to define numerics, such as grid 
definitions and numerical algorithm specifications. Examples of such parameters are 
those controlling grid placement and size, time steps and their controls, convergence 
criteria, accuracy controls on adaptive difference schemes, and many other numerical 
features. In short, φ  certainly contains the parameters that are used to influence the 
accuracy of a numerical calculation, but that have no effect on whether or not one is 
calculating the correct experiment. More confusingly, φ  may also contain material 
parameters that are non-constitutive, or at least not obviously constitutive. An example of 
such a parameter could be a molecular relaxation time that has no experimental analog. 
There may also be similar parameters involved in complex boundary conditions, such as 
radiant heating sources.  

The most essential point about x  is that the choice of x  in a model prediction defines the 
corresponding validation experiment. This is worth repeating, so we do so: The validation 
experiment is defined in terms of the input vector x , not the computational parameter 
vector φ . An existing experiment, in turn, defines the choice of input vector x for an 
appropriately aligned calculation. The experiment has no explicit influence on the choice 
of φ , however.  

As we suggested above, there are gray areas where the decision to place an input variable 
in x or φ is not clear. And there are other subtle issues that should suggest to the reader 
why an extended discussion of the topic of alignment is complex and beyond the scope of 
the present report. For example, what if a critical dimension is measured incorrectly in an 
experiment? What if a critical dimension is improperly constructed in the numerical 
model? What if a measurement gauge in an experiment is improperly located in space? 
What if the computational model records synthetic data at an incorrect location? What if 
the vector φ  is chosen so improperly that the resulting calculation will not simulate the 
associated experiment with any accuracy? In all of these cases, and an effectively infinite 
number of other similar situations, are the experiment and the calculation still aligned? 
Can they be aligned, at least in principle? How would we recognize that the source of the 
error that will surely result if we compare calculations and experiments in these situations 
is due to alignment, rather than some problem of validation? In the following we basically 
assume that the experiments and models we discuss are in good alignment, thus begging 
these questions. This is for simplicity of presentation in the current report, not because 
these questions are not important. 

Returning to our basic discussion, the computer model ),( φxM  written above is an 
operator that transforms input variables x  and numerical parametersφ  into the predicted 
result *y . This transformation is assumed to be deterministic in this report in the sense 
that for a given and fixed specification of the vectors x and φ  the code always gives the 
same *y .  
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We also assume in this discussion that the code has been verified (thus resolving one of 
the issues we raised above by definition). One way of stating this is that the code is 
“validation ready.” In practice this simplistic assumption is likely to be wrong. What we 
really assume by this statement is that sufficient effort has been devoted to verification of 
the model that pursuing validation makes sense to begin with. 

The reader should keep in mind that the simple formalism of Eq. (3.1) can disguise all of 
the mathematical effort included in an ASCI code at Sandia. For example, ),( φxM could 
represent the approximate solution (operator) of a system of partial differential equations. 
As an illustration of this point consider conservation of energy for heat conduction in 
solid material, which is modeled by the solution of the single partial differential equation 
on a finite one-dimensional domain Ω  

   0
ˆ

)
ˆ

( =
∂
∂−

∂
∂

∂
∂

t
yC

X
yk

X pρ  for Ω∈X .    (3.2) 

In this case, the components of the input vector x  include the thermal physical properties 
of the material and the definition of the spatial domain Ω  and its boundary Ω∂ , as well 
as any initial and boundary condition specifications. We write ),,,,( Ω∂Ω= pCkx ρ , 
where we have hidden possibly complex initial and boundary conditions in the symbols 
{ }Ω∂Ω, . The experimental response y  is the dependent variable temperature. We have 
written it as ŷ  in (3.2) because we wish to emphasize our assumption that what is 
measured experimentally is well enough approximated by (3.2) for this comparison to 
make sense to begin with (the alignment problem again). The numerical solution of (3.2), 
whether by finite elements or finite differences or some other method, is the generic 
model operator that we have written in (3.1). This numerical solution yields the model 
prediction *y .  We should point out that it is not necessarily the case that a dependent 
variable from a model like the solution of the partial differential equation (3.2) is what is 
compared with experiment for model validation purposes. In many cases attributes of the 
dependent variables given by functionals, such as maximum values, are used instead.  

Now, consider an experiment conducted at a specified x , having outcome )(xy . The 
prediction error of the model at x  is defined as 

)(*)( xyxyex −=      (3.3) 

Note that xe  contains all of the bias and uncertainty associated with both the experiment 
and the model. We symbolically neglect the dependence of xe on φ  in the following 
discussion. First, varying φ  certainly does not influence the experimental outcome. The 
dependence of )(* xy  on φ  is implicit – we simply choose not to write it out. If the 
reader prefers, one can interpret our assumption of “verified code” above to mean that we 
have also selected φ  to provide the optimal (and sufficient!) numerical accuracy for 
simulating the experiment(s) under discussion. Evaluating model predictive capability 
requires selecting a sequence },...,1:)(*),(,{ nixyxyx iii =  and evaluating xe  at each 
element of this sequence. (This is not possible if validation experiments cannot be aligned 
with model predictions.)  
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3.2 Statistical Model  

Prediction error xe contains random and systematic contributions. We will represent the 
relationship between )(xy and )(* xy in the form 

xexyxy += )(*)(      (3.4) 

where xe  is now specifically understood to be a random variable (or random field) with 
an unknown probability distribution that generally depends on x . Equation (3.4) is a 
statistical model of the relationship between experiment y and model prediction *y . The 
prediction error xe  represents the combined effects of both model and experimental 
uncertainty, including measurement error and more general uncertainty associated with 
the experimental outcome at x , as well as model prediction uncertainty. An alternative 
formalism could make this more explicit, but the current discussion is sufficient for our 
purposes. The term xe  also reflects any hidden lack of alignment between experiment and 
model, in the sense we discussed it in Section 3.1, between the model and experiment, 
although this contribution may be very difficult to elucidate. 

Comparing experiment and model for the purpose of evaluating model accuracy and 
predictive capability involves investigating xe  over a range of x-values determined 
through the experimental design (see section 3.3.2 below).  There are at least two specific 
concerns about model performance to be evaluated.  First is the concern that there are 
regions of the input space where the expectation ( )xeE  is not (even approximately) zero, 
indicating possible biases in the model.  A second concern is that the model is not 
adequately predictive; there are inputs, either not included in x (and hence not utilized in 
the modeling) or included yet not fully utilized by the model.  Models that lack predictive 
capability yield high variability in xe , even after compensation has been made for 
measurement errors associated with the physical experimentation. 

Evaluating the information available through model validation involves trying to make an 
assessment of both the information generated through completed experimentation, and 
the information that might be gained through further testing and computational analysis.  
This evaluation is best accomplished after model deficiencies discussed in the previous 
paragraph have been addressed and, to the extent possible, cleared up so that reasonable 
models for xe  are available.  Comparison of this information to requirements can also 
help establish the needs and directions for further experimentation and computation. An 
important goal of the VMP that plays a role in each of the key objectives stated in Section 
3.1 is to determine guidelines for evolving the suite of x  – points at which to conduct 
experiments and computations and for comparing and analyzing results. 

Viewing the differences between experiment and model as statistical has engineering 
precedent.  For example, in bridge design, civil engineers use a mathematical model for 
“scour” – the erosion of soil around a bridge’s foundation due to river flooding (Johnson 
1995).  This model is a function of soil type, flood magnitude, river velocity and other 
pertinent variables.  For predictions civil engineers incorporate an additional “modeling 
factor” to represent the deviation of actual scour depths from the theoretical model.  This 
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modeling factor corresponds to xe  in our notation and is statistical. A more complex 
application where differences between observations and model results are statistical is 
climate prediction (Epstein, 1985; Wilks, 1995). 

A key assumption underlying the present discussion is that xe  can be modeled as a 
random variable or random field. One purpose of the VMP is to investigate methodology 
that can be used to model xe  and to test the viability of these assumptions. It is important 
to realize that information about the probability distribution of xe at a particular x -point 
can be obtained from the suite of experiments and calculations, not just the experiment(s) 
solely at that x  – point.  For example, it may be reasonable to assume, based on the 
ensemble of data, that the variance of xe is constant over some x -region. Thus, all the 

xe data in that region can be pooled to estimate this common variance. More generally, 
spatial statistical methods (Sacks et al., 1989; Cressie, 1993; Rutherford et al., 2001) can 
be used to link the ensemble of data and provide estimates of the distribution of xe at 
selected x  – points. That is, xe  distributions at nearby x -points are likely to be more 
similar than xe distributions at widely separated x -points.  Spatial models capture and 
capitalize on such relationships.  By whatever modeling method is considered or adopted, 
the general objectives of the analysis of the xe data are the following.  First, estimate the 
probability distribution of xe  at the x  – points at which computations and experiments 
are conducted. Second, estimate the probability distribution of xe  at x  – points pertaining 
to physical entities and environments that have not, cannot, or will not be subjected to 
physical testing.  This estimated distribution can be applied to estimate xe for the relevant 
application. Because estimation of predictive capability in this sense must be 
nondeterministic in our view, we also deem it important to therefore characterize the 
reliability of the estimate by some means. Whether the estimate of xe  which results from 
this process is “good enough” is not a question that can be answered by this project. 
(And, whether a statistical approach can be used to derive useful predicted limits on xe  is 
part of the work of the VMP.) Some recent work of interest in this regard is found in 
Field and Red-Horse (2001). 

In summary, our objectives include answering the questions: “Is the model adequate for 
the application?” “What is the predictive capability of the code?” and “How well is that 
capability understood?” Answering the latter two questions directly asserts whatever 
confidence we might have in predictions based on the application of the model. Their 
answer also calls for estimating uncertainty associated with the predictions made by the 
code, even when those predictions may be deterministic, and for quantifying the 
uncertainty of this estimate. The objectives of the model validation phase of analysis are 
addressed using data from computational simulations and physical testing.  Methods for 
specifying the data to use – experimental design and methods for the data analysis are the 
topics of the two remaining subsections of Section 3. 
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3.3 Experimental Design Challenges 

3.3.1 Introduction 

The VMP will develop and test methods for assessing model performance and evaluating 
predictive capability of computational models through case studies where the nature of 
(3.4) will be investigated for these applications.  This section summarizes some of the 
challenges that are likely to be encountered in this effort and indicates the directions that 
will be taken. It will act to further inform the reader as to our rationale for selecting the 
case studies. It is anticipated that in the course of this project’s work on these case studies 
other issues will emerge and novel ways of resolving them may be developed. 

In broad terms, validation experimental design means selecting a set of x  – points that 
defines appropriate validation experiments as well as defines suitable computational 
predictions.  In terms of physical experiments, this includes determining experimental 
plans that specify the test hardware, methods, conditions, instrumentation, data collection, 
and post-processing techniques used to obtain information required for subsequent data 
analyses.  All of these elements have different nuances for experiments that are designed 
for model validation studies as opposed to phenomena exploration or calibration. We feel 
that this point must be emphasized. A number of specific experimental design-related 
issues are important for the model validation applications anticipated for the ASCI 
program.  The headings “Interpolation and Extrapolation,” “Experimental Objectives,” 
and “Constraints and Sensitivity,” describe the remaining topics to be covered in Section 
3.3. 

3.3.2 Interpolation and Extrapolation 

ASCI applications may involve interpolation or extrapolation from experimental 
experience. Problems involving interpolation require predictions that are based on results 
from the region of x  – space where the experimentation occurs. Those involving 
extrapolation require predictions based on regions of x  – space where there are no 
physical experiments. Intuitively, interpolation among test data should be easier and 
could still be the purpose of the intended modeling application. Whether extrapolation or 
interpolation are required in a given case, and what types of prediction will eventually be 
required, is very dependent on the specific application that defines the validation efforts. 
(See, for example, the case study descriptions in Sections 4 and 5.) The role of 
experimental design is illustrated schematically in Fig. 3. For ease of illustration the space 
of validation experiments and applications is there defined by two meta-variables, 
configuration and environment.  (Other meta-variables may be appropriate for different 
applications.) In the context of Defense Programs needs at Sandia, because of treaty, 
regulatory, or economic reasons it may not be possible to test hardware configurations in 
their required environments.  For this reason, Fig. 3 depicts a situation where we seek to 
extrapolate from test data.  

Our basic problem is to extend what we can learn about model predictive capability 
(represented by the prediction errors )(*)( xyxyex −=  in Fig. 3) at the selected x – 
points where we can evaluate it to an inference about predictive capability where we 
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cannot evaluate it experimentally. A necessary condition for attempting to do this is that 
we have enough data – enough experimental x – points – to be able to reasonably 
accomplish this. It may well be that making this decision can not be separated from the 
predictive inference in complex model applications. Given this presumption, we can then 
focus on the technical problems of how to do it. If we believe that we don’t have enough 
data, this question as we have framed it then becomes moot. Therefore, we will assume 
that we have enough data to make the investigation worthwhile. 

This type of inference requires an extension of the model itself plus an extension of what 
we know about unmodeled phenomena, which may be only partially represented or 
suggested by the observed prediction errors. Making this extension successfully and 
credibly surely requires subject-matter knowledge about the axes along which we can 
make such extensions. To illustrate this point, consider the design of a new neutron 
generator that must function properly when subjected to some range of radiation 
environments.  The Comprehensive Test Ban Treaty precludes the historical means of 
testing a neutron generator in its threat environment via an underground nuclear 
explosion.  Lesser, yet more experimentally controlled, environments, however, can be 
obtained from various above-ground radiation sources.  On the configuration axis initial 
computational predictions and experiments may be done for simple geometries, such as a 
flat plate or an aluminum cylinder, rather than for a neutron generator with its complex 
assembly of diverse parts and materials. The challenge is to integrate all these results to 
obtain statements about system-level predictive capability. Appendix A discusses this 
problem in greater detail for a weapon-in-a-fire scenario. 

Choosing the validation experimental design and conducting the experiments leads to 
several questions that must be successfully addressed. As well, the mechanics of the 
solution of the inference problem of predicting xe beyond the region where data has been 
acquired involves the solution, or approximate solution, of a host of problems. The 
following subsections will freely speculate about some of the ideas that we feel are 
germane to attacking these problems. But there are other problems that we will not even 
speculate about in detail in this report. An example of one such problem is the 
recognition that subject-matter expertise alone will not dispose of model uncertainty due 
to unknown unknowns, such as code bugs or a fundamentally incorrect conceptual model. 
Failure to resolve this problem contributes to xe  in its most general sense. However, not 
only is such a problem beyond the scope of this report, but its full (or partial) resolution 
lies beyond the short-term scope of the VMP itself. Clearly, some methodologies for 
coping with uncertainties not uncovered by comparison with experimental data, whether 
due to poorly chosen x – points or to an insufficient number of them, are called for. These 
methodologies appear to us to also be especially important for the problem of usefully 
bridging phenomenon-centric validation to application-centric validation.  

3.3.3 Experimental Objectives  

In principle, one of the most useful problems that the VMP might hope to “solve” in 
some sense is to optimize the design of a validation experiment program. Meaningful 
validation experiments should be designed to meet one or more explicit objectives. In 
general, the experiments conducted (1) should provide a sufficient test of model bias and 
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predictive capability and (2) the collective set of experiments and associated 
computational predictions should provide a basis for making the desired inference of 
predictive confidence for the targeted applications in application-centric validation.  Of 
specific concern is that experimental procedures are required that can contribute to the 
extrapolation of our inference from one region of parameter space to another. What 
exactly (1) and (2) mean is properly part of the research of this project, especially the case 
studies. We will simply take the statements at face value in the following in order to help 
illustrate conceptually some of the required thinking. 

There are various ways to translate these objectives into a basis for experimental design.  
Consider one simple. One measure of predictive capability at x  is the standard deviation 
of prediction error, xe , at that point.  One might define the objective to estimate this 
standard deviation within P% and then derive the number of experiments required to 
achieve that precision.  These experiments could either be n  replications at the selected 
x-point or n  total experiments at different x  – points within a region within which it is 
reasonable to expect an approximately constant standard deviation of xe . The 
experiments should also provide the data with which to test such an assumption. 

 

 

 

Figure 3. Inferring predictive capability from the model validation process. 

 

Configuration

En
vi

ro
n m

en
t

xA

xA

Test Region
Application

INFERENCE
x

x
x

x

x

x

x
(x)*yy(x)ex −=

)(x*y)y(xe AAx
A

−=



 

 28

The required precision with which to measure predictive capability could also be used in 
setting experimental goals. Some percentage of experiments might be selected strictly on 
the basis of subject matter expertise. Another experimental objective might be model 
breaking.  In that case, x  – points are chosen for which there is reason, either past 
experience or subject-matter expertise or both, to believe that the computational model 
may be inadequate.  This kind of validation testing may also be justified by a bounding 
approach to characterizing prediction capability.  In other words, rather than attempt to 
characterize prediction capability at each of several x  – points, one would instead pick 
situations for which it can be argued that prediction capability elsewhere could be no 
worse. This is actually quite similar to past practice where are computational predictions 
have been used to guide the early phases of design and qualification activities. What we 
are talking about here, though, is a significantly greater formalization of such practice. 

The conduct of a validation experiment influences how well predictive capability can be 
measured and thus addresses the second objective.  But whether the basis is sufficient is 
not resolved by this alone. A variety of random and systematic factors can differentiate 
computational prediction and nature.  Validation experiments need to be conducted in 
ways that allows these factors to be manifested as they would in an application of interest, 
if at all possible.  For example, predictive capability measured in a tightly-controlled, 
pristine lab environment may not be appropriate for inferring predictive capability in a 
much less controlled, noisier application environment.  The objective of assessing 
predictive capability in a specific application influences experimental design in terms of 
both what is controlled and what is not controlled in the experiments.  

One of the work products of the VMP in FY 2001 is to provide general guidance for the 
design of a set of validation experiments. The hope is that such guidance can serve as a 
minimal starting point, even though many details will be application dependent. We 
expect that suitable general guidance can be developed that will prove to be useful. 

3.3.4 Constraints  

Time, resources, and experimental capability substantially constrain validation 
experimental design and conduct.  Such constraints must be balanced against the 
experimental objectives in arriving at a plan for model validation experimentation.  A 
difficult decision will have to be made as to whether a meaningful evaluation of 
predictive capability is possible under existing constraints in any given situation. 

. The set of selected x  – vectors also needs to be meaningful to both the experimentalist 
and modeler in order that both computational predictions and experiments at selected x  – 
points can be performed and compared.  This is the intuitive heart of our concern with 
alignment. Our discussion so far has implicitly assumed that the full x  – vector can be 
controlled or accurately measured in a validation experiment, which is an alignment 
problem. If the modeler’s x  – vector contains variables that have no experimental 
meaning, then our hoped-for alignment is likely not true and it may not be possible to 
make meaningful comparisons.  If the modeler’s x  – vector requires measurements that 
cannot or will not be made, or if the model output includes measurements that can’t be 
made, then the result will be increased prediction uncertainty.   
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3.3.5 Sensitivity 

The objective of characterizing predictive capability in some quantitative sense over some 
high-dimensional x  – space can quickly require an experimental design for the validation 
experiments that exceeds available or reasonable resources.  It is important to develop 
rational approaches for simplifying the design. One way to achieve this is to vary only a 
subset of the variables in x  while holding the others fixed at nominal, or at least 
bounding, values. This may be easier said than done, especially for more complex tests 
associated with application-centric validation. Typically, one would like to apply 
sensitivity analysis to this problem to determine those elements of x  that the output 
depends most sensitively on. Unfortunately, resolution of the sensitivity problem is also 
very resource intensive. In some sense, we also need to reduce the number of elements of 
x  in order to perform sensitivity analysis, a vicious circle. As it is, performing sensitivity 
analysis for complex models with many dimensional input vectors x  remains an 
important problem, the solution of which will positively influence our ability to perform 
validation. 

Because of the potential expense and difficulty of performing systematic sensitivity 
analysis, both model simplification and experimental simplification are attractive 
elements in model validation. However, care must be taken that this type of simplification 
does not acquire unacceptably ad hoc characteristics in complex model validation 
problems. At its worst, for example, model simplification may simply assume facts that 
are instead supposed to be established by rigorous validation methodologies. Similarly, 
experimental simplification may rely on assumptions about physical processes that cannot 
be fully justified. 

3.4 Analysis.   

3.4.1 Introduction 

After conducting a suite of experiments and computational predictions we assume that the 
next reasonable task is to analyze the resulting data, },...,1:)(*),(,{ nixyxyx iii = , where 
the subscript is used to index the x  – points at which experiments and computations were 
conducted.  It is important to note that this subscript is assumed to refer to distinct 
experiments.  Given the computational and experimental outcomes from the suite of 
experiments, the objective of the analysis of these results is to assess the model for bias 
and measure and/or estimate predictive capability. The following subsections address 
additional challenges that arise in this analysis and require some kind of resolution. The 
topics “Metrics,” “Choice of Variables,” “Point Prediction,” and “Distributional 
Prediction” are discussed. 

3.4.2 Metrics.   

Here we provide an example discussion of validation metrics to clarify the technical 
meaning of the concept. Because we have insufficient evidence of which metrics might be 
successful for applications of interest to the ASCI program at Sandia, we claim no intent 
in this discussion to constrain the work of the VMP to only these metrics.  
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A model of predictive capability at an x  – point, such as Eq. (3.4), can be characterized 
by a variety of “parameters” (in the statistical sense of being a characteristic of a 
probability distribution) of the probability distribution of xe .  The expected value and the 
standard deviation of xe are two important examples. Other parameters might be the 

square root of the expected squared error [ ] 2
12 )( xeE , where )(⋅E  denotes expectation; the 

expected absolute error times three; the 99th percentile of the distribution of absolute 
error; the lower and upper 95th percentiles on the distribution of xe ; and others that have 
traditional importance in statistics, including correlations.  If the computational model 
was designed to be conservative on the high-side (i.e., xe is intended to be negative), the 
metric of interest might be )0( >xeP , where )(⋅P  is probability.  When xe has a normal 
distribution all of these distributional characteristics are functions of the two parameters 
that characterize a normal distribution, the mean value and the standard deviation, an 
particularly simple situation. We make no claims that we expect this wonderful 
simplification in general.   

None of these measures of predictive capability are known a priori; they can only be 
estimated from the experimental and computational results.  The uncertainty of such 
estimation will be proportional to the amount of data that is available. It will likely be 
quite large for very limited data, but this remains to be illustrated in specific 
investigations. Statistical methods can account for estimation uncertainty by methods 
such as confidence limits (Brownlee, 1965).  For example, with 90% confidence the 
upper 95th percentile of the distribution of xe is no more than UL90/95. (UL90/95 is upper 
statistical tolerance limit that reflects the amount of data used to estimate a distribution's 
parameters, in this case the distribution's 95th percentile.  See Hahn and Meeker, 1991).  
Other methods may also be candidates for forecasting the reliability (accuracy and 
precision) of estimated measures of xe . The essential point is that any “metric” of 
predictive capability derived from a model validation process – the “validation metrics” 
in the title of our project – will be a statistical estimate and the reliability of that estimate 
must therefore also be considered. 

Other metrics that may be of interest in assessing prediction confidence can be obtained 
by treating the model validation problem as a hypothesis test.  In terms of the statistical 
model Eq. (3.4), a hypothesis that might be tested is 0)( =xeE , which is the hypothesis of 
no bias at a particular x or perhaps within some x -region.  From this approach, the 
resulting validation metric is either a pass/fail decision or a measure of the degree to 
which the hypothesis is contradicted by the data.  Such metrics, or rather their underlying 
logic, are not direct measures of model predictive capability, such as an accurate 
prediction of xe . One must also apply them carefully. For example, the poorer the quality 
of predictive or experimental results (in other words, the greater the associated 
uncertainty), then the harder it will be to reject hypotheses of model invalidity. However, 
a finding of significant bias, for example, is a essential statement of inconsistency 
between experimental data and prediction. As a consistency test hypothesis-test based 
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metrics thus play a clear role in the analysis of the computational and experimental 
results.  

Logically, of course, we view consistency analysis of the comparison of model and 
experiment as a necessary precursor to any serious effort to predict xe beyond the 
established experimental base. For one thing, evidence of inconsistency may be one of 
our prime methods for determining that model and experiment are actually not aligned, 
and thus should probably not be compared at all. We also note that Hills and Trucano 
(2001a) analyze a case where xe is relatively small, but it is also known that the model is 
inconsistent with the data. What one makes of this discovery in the case of complex 
application-centric validation is not clear. Such an eventuality at least suggests that any 
attempt to extrapolate xe from the data discussed in that report is dangerous. 

3.4.3 Choice of Analysis Variables.   

In both experiments and computations there are a large number of variables that can be 
observed and compared.  We have already suggested that resource constraints may make 
simplification via sensitivity analysis or model simplification desirable. But, making the 
analysis manageable and the results meaningful and communicable also requires a careful 
simplification of the variables y for which to actually evaluate predictive capability. 

In our view, the selection of the variables y should first be driven by requirements of the 
motivating application.  If the requirement is that peak strain at a given location should 
not exceed some value, for example, then the model validation objective is to quantify the 
predictive capability pertaining to calculated peak strain at that location. While it would 
add confidence in application of the computational model to know that the complete 
strain versus time history at various sites in the test device can be reasonably well 
predicted, it is really not technically clear how appropriate it is to devote a lot of analysis 
to measuring predictive capability over an extensive time and space grid that is 
complementary to a key requirement. We do know that human confidence in a particular 
calculation appears to increase when more than one prediction from that calculation is 
found to agree with experiment.  

A requirements focus may be a way to also reduce the dimensionality of the data, which 
in general may be histories of responses such as acceleration, strain, or temperature in 
time and space, to a small number of ‘integral’ variables such as peak acceleration, peak-
to-peak strain, the ‘area-under-the-curve,’ or the time to reach critical temperatures at 
selected points in a system or component. This is particularly important for models as 
general as ASCI codes, where an overwhelming amount of output can be generated. 
Danger lurks, however. We also know that it is often true that a model be in good 
agreement with one channel of data in an experiment but not in agreement with another 
data channel. If the requirement is concentrated in the first data channel, it is then 
doubtful that the confidence stimulated by the sole agreement with that channel is 
actually well-founded.  
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3.4.4 Inference 

Suppose, as an example, that at n  selected x  – points, },...,1:{ nixi =  we have conducted 
and compared the results of model validation experiments to model predictions. Purely 
for illustrative purposes, suppose in addition that we have performed enough experiments 
or have other sources providing estimates of the standard deviation of the prediction error 
distribution of xe  at each point: },...,1:{ nisi = .  Suppose further that we have measures 
of the precision of these estimated standard deviations. (In a conventional statistical 
setting, these measures would be the “degrees of freedom” associated with the estimates.) 
Let the point iA xx ≠  define a point prediction that is required for the application of 
interest, as in Fig. 3.  The inference problem of concern to us is then how to use the 
collection of },...,1:,{ nisx ii =  results to determine As , the estimated standard deviation 
of xe at Ax , and to also obtain a measure of the precision of that estimate.   

This, in general, is a difficult and philosophically deep problem.  We have no ready 
solutions or approximations thereof for this problem at the time of writing of this report. 
However, we can make several observations about this problem. For example, we note 
that the ability to satisfactorily solve such an inference problem depends on a number of 
considerations.  First, the definition of the x  – space is critical in order that Ax and the set 
of ix be comparable within the goals of the inference.  We emphasize again that the 
definition of the variables in the x  – vector is not just a modeling issue.  For application-
centric validation, the experimenter(s), the originator(s) of the requirements, and the 
decision-maker(s) have to ultimately be able to operate and communicate in terms of this 
x  – space.   

Next, the ability to infer As  with precision depends on the location of Ax  relative to that 
of the ix .  If Ax is, in some sense, surrounded by the ix , the problem is intuitively one of 
interpolation.  If Ax lies beyond the ix (as in Fig. 3), then inference apparently requires 
extrapolation.  Even if the underlying scientific relationships are known to extend over a 
region containing both the ix and Ax , there is no such basis for extrapolating the 
probability distribution of xe which, after all, reflects factors in nature not captured by the 
scientific model. Any kind of inference about xe , whether based upon interpolation or 
extrapolation, will be dependent on empirical trends and expert interpretation of those 
trends, expecially for applications involving extrapolation. It is clearly worthwhile to test 
at some x  – points that are as close as possible to the intended application.  This means 
that some system-level testing will be highly desirable for application-centric validation 
by definition. The VMP seeks to define refinements of the inferential approach that will 
help to define more precisely what these expensive system-level tests should be. If it is 
impossible to perform such near application tests, the VMP can still hope to provide 
value by defining a useful methodology for describing the uncertainty in xe in the results. 

As an example, suppose that radiation effects testing of aluminum cylinders in various 
above-ground radiation environments and the corresponding computational predictions 
indicate that peak stress at various locations and orientations can be computationally 
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predicted under these conditions with a relative standard deviation of about 10%.  
Suppose that above-ground radiation tests of and computations for a sub-scale partial 
mock-up of a weapon component indicate a relative standard deviation of about 20%.  
We now want to make a credible, defensible statement about predictive capability in 
terms of calculated peak stress at critical points in a realistic component subjected to a 
radiation environment that is different from those achievable in conventional test 
facilities.  Our ability to formulate such a statement depends on our ability to link the test 
configurations and environments, },...,1:{ nixi = , to the application, Ax .  Such a linkage 
may have to be achieved through expert judgement rather than mathematical formalism. 
And significant uncertainty in this linkage may result from inability to perform a test near 
application conditions. This uncertainty, of course, should be quantified if at all possible. 

In passing, we note that the spatial representation of the experimental design (in x -space) 
and inference problems involving xe suggests that spatial statistical methods, such as 
kriging, may be of use to model a metric which is dependent on xe , such as the estimated 
standard deviation of xe  at x , as a function of x . They would then serve as the basis for 
developing an estimate the value of that metric at Ax and also provide an estimate of the 
uncertainty of that estimate (Cressie, 1993). 

We conclude by observing that current practice is not unfairly characterized by stating 
that inference of xe  follows from intuitive validation metric (for example, via curve 
overlays of experimental data and model predictions). If the apparent agreement looks 
good, then one is more justified in using the model predictions as a surrogate for nature 
than if the apparent agreement looks bad.  We have no illusions that we will eliminate 
subjectivity from inferences of predictive capability, but we do hope to express it in more 
useful ways that are especially relevant as guides for the validation experiment process 
and that then allow us to gain more value out of it for characterizing confidence in 
models. 

3.4.5 Distributional Predictions and Uncertainty Quantification   

A deterministic code calculates a prediction for a single, completely specified situation.  
Predictions of application interest, though, are often distributional predictions, not single 
point predictions.  Weapon systems are not identical and delivery and target conditions 
vary from mission to mission.  In such situations the objective may be to predict the 
resulting probability distribution of some characteristic of weapon performance, such as 
maximum shock on a key component, over some probability distribution of system 
variables and environmental conditions.  Features of this distribution, such as the 
probability of exceeding a failure threshold or expected system performance, are 
generally of particular application interest. The question is: “How should information 
about predictive capability, as assessed via validation metrics, be included in model 
distributional predictions?” 

Here is an illustration of the issue. Suppose that a subset },...,{ 1 RpR xx  of the x -points in 
the collection },...,1:{ nixi =  is to be treated as random to obtain an output distributional 
prediction.  Suppose further, as a starting point, that the probability distribution of 
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},...,{ 1 RpR xx is specified. There are a number of possible approaches that can be utilized 
here depending on the assumptions that are made.  Under our assumed statistical model 
(3.4), the law of total variance yields the result (Easterling, 2001) that if one fixes the 
values of the variables in x  that are outside the subset },...,{ 1 RpR xx then 

( )[ ] ( )[ ] ( ) ( )[ ] ( )[ ]xRxRxRR eVEeExyVexyVxyV ++=+= **   (3.5) 

where ( )⋅V denotes variance, ( )⋅E denotes expectation, and the subscript R  denotes that 
the indicated variance or expectation is with respect to the distribution of }{ Rx .  This 
expression relates the variance of y in nature (the left-hand side of (3.5)) to the model-
based variance of *y  and the bias and variance of the prediction-error distribution. 

Suppose, to simplify things for this discussion, that ( ) 0=xeE  for all x in the x -region of 
interest. This means that predictions are unbiased (a condition one might hope for after 
the iterative process of checking the model is complete)..  Then (3.5) becomes 

( )[ ] ( )[ ] ( )[ ]xRRR eVExyVxyV += *    (3.6) 

Stochastic propagation of the assumed distribution of },...,{ 1 RpR xx through the model 
),( φxM  (typically called uncertainty propagation) provides an estimate of the first right-

hand term in (3.6).   Model validation experiments and data analysis, if successful, 
provide an estimate of the second right-hand term.  Their sum estimates the left-hand 
side.  Given information about the precision of each right-hand estimate (degrees of 
freedom in a conventional setting) a measure of the precision of the combined estimate of 

( )[ ]xyVR  can be obtained.  Further analyses can be done, for example, to estimate failure 
probability and provide confidence limits on failure probability. This analysis is similar to 
that done in the civil engineering example mentioned earlier, the difference being that the 
distribution of xe  estimated here, rather than assumed to be known. 

The application of uncertainty quantification (UQ) in the prediction of model 
distributions facilitates inference of predictive capability from more controlled validation 
experiments to the less controlled motivating applications. That is, in validation 
experiments certain x ’s may be tightly controlled whereas in an application they will 
vary, perhaps considerably.  Predictive capability in the application can then be evaluated 
by using UQ methods to propagate the application’s x – distribution through the model.  
As long as the extra-model variability observed in the validation experiments and 
computations also applies to the application, the UQ and the validation results can be 
combined as in eq. 3.6.  Such synthesis allows us to minimize the need to execute 
validation experiments at the application level, at least in order to develop a credible 
prediction of xe and its uncertainty. In situations where some of the assumptions above do 
not hold or where more complicated features of the response are to be predicted, more 
involved methods for modeling the distribution (spatially in x -space) are available; see 
Sacks, et al. (1989), Rutherford, et al. (2001) for examples. 

UQ has other roles in validation.  For example, some of the components of the model 
input vector x  might be specified by measurements from the experiment for which a 
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computational prediction is to be compared, and thus contain measurement error.  (Note 
that this situation precludes performing a true model prediction, and this is not 
particularly desirable from the viewpoint of model validation.) This measurement error 
can be propagated into the xe  data.  UQ methods can then be used to estimate and remove 
both the bias and the variance introduced into xe through the treatment of measurement 
error in x . Similarly, estimation error associated with the model parameter, φ , is 
transmitted into the xe data.  UQ methods can be used to evaluate the effect of parameter-
estimation error on predictive capability. 

One prime objective of the UQ effort at Sandia is to provide tools that are needed to 
perform the computations and aggregate the information necessary to predict probability 
distributions from the model ),( φxM . Uncertainty analyses of this type for ASCI-scale 
models and applications can be computationally expensive. The computational 
complexity of an ASCI computational model, as well as the management of  a potentially 
large number of model predictions, requires application of parallel computing tools.  

In that vein, efforts have been undertaken in FY 2001 to further develop a software 
environment to perform UQ, in particular distribution prediction via forward propagation 
of probability distributions through the large-scale computational models ),( φxM . This 
particular effort is designed to leverage existing software architecture components from 
the DAKOTA (Design Analysis Kit for OpTimizAtion) framework (Eldred, 1998).  The 
intent is to develop discipline independent tool capability (that is, equally applicable to 
models arising in fluid, thermal, solid, and electrical analyses) that utilizes a variety of 
non-intrusive techniques, including analytical reliability methods and sampling methods. 
This work also is intended to provide a foundation for future research and development of 
further UQ  methods as the tools gain maturity.  

The VMP will likely generate additional needs for UQ efforts at Sandia. Consequently, 
coordination with UQ software tool development is an essential part of this project. This 
coordination allows for the rapid  incorporation, extension, and  evolution  of capabilities 
required to help meet our stated validation tasks. These needs will involve not only UQ 
techniques applicable to the computer models, but also those more suited to the analysis 
of experimental data.  

 

4. Structural Dynamics Case Study Description 

4.1 Introduction 

Improvements in our ability to mathematically model structural physical systems have led 
to increased reliance on system models for design and performance assessment. Yet it is 
generally acknowledged that most mathematical models do not perfectly simulate real 
structural system behavior. Some reasons for this, on the side of the mathematical model, 
are that (1) there is always uncertainty about the correct values for some mathematical 
model parameters, and (2) the form of the governing equations and the manner in which 
the parameters enter only approximate physical reality. On the experimental side, (1) all 
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measurements of system behavior include noise, (2) measurements are made at only a 
finite (sometimes small) number of points, (3) measurements provide average behavior 
over a region, and many other reasons.  

In view of these things, it is desirable to define a technique for comparing mathematical 
model behavior to experimental outcomes that accommodates both analytical and 
experimental uncertainty. Again, on the analytical side, there are several techniques for 
assessing the probabilistic character of response measures from mathematical models of 
physical systems. Some of these techniques are designed to wrap around deterministic 
models of physical systems. Examples are the Monte Carlo method, first and second 
order reliability methods, and the advanced mean value method. (See, for example, Wu 
and Wirsching, 1987.) Other techniques are specifically designed to model stochastic 
systems. An example is the stochastic finite element method. (See Ghanem and Red-
Horse, 1999.)  

On the experimental side, the classical methods of statistics make it difficult to estimate 
probabilistic models of arbitrary system behaviors because of their common reliance on 
assumptions of Gaussian distribution. However, modern, computer intensive, methods for 
statistical analysis like the bootstrap (discussed below) can be very useful for assessing 
the probabilistic character of response measures from experimental physical systems. 
(See Efron and Tibshirani, 1993.) The technique performs well on measures of system 
performance that are non-Gaussian, and where measured data are very limited. It yields 
estimates of bias, standard error and confidence intervals on experimental measures of 
interest. 

This investigation exploits our abilities to develop probabilistic models of measures of 
behavior of mathematical models of structural dynamic systems as well as the 
corresponding experimental measures of behavior of the physical systems being modeled. 
We use this information in a probabilistic/statistical framework to determine the non-
acceptability or acceptability of the mathematical model. This can be done for arbitrary 
measures of system behavior, however, we choose to focus on a metric of the spectral 
density of system response. Spectral density is the fundamental and most widely 
employed measure of second order behavior in systems excited with stationary random 
inputs.  An example is presented. 

4.2 Stochastic Structural Dynamics 

Mathematical models for the analysis of structural dynamic systems are important 
because they permit the approximate relation of input excitations, system parameters, 
initial conditions and boundary conditions to the response behavior of structures. This 
activity is, of course, essential for the assessment and design of structural systems. (For a 
detailed description of the mathematics of structural dynamics and random vibration, see 
Wirsching, Paez and Ortiz, 1995.) Mathematical models of passive structural dynamic 
systems approximate system behavior with matrix equations. When a system is modeled 
as linear, then the matrix equations are linear. When the excitation is a vector of 
stationary random processes, the problem is one of random vibration. When the system 
parameters are random variables or random fields, the problem is one of stochastic 
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system dynamics. These problems are often characterized as problems of probabilistic 
structural dynamics. 

A system excited by random input executes response that is a random process. When the 
excitation and response are stationary random processes, they are usually characterized in 
terms of first and second order averages of motion. The most important second order 
measure of behavior of a system excited by stationary random excitation is the spectral 
density. The autospectral density of a random process describes the distribution of mean 
square signal content in the frequency domain. The integral of the autospectral density of 
a stationary random process equals the mean square of the random process over all 
frequencies. When the excitation is modeled as a vector of mean zero stationary random 
processes it is denoted ( ){ }∞<<∞− t,tQ  and its spectral density characterizes it. Its 
spectral density is an NxN matrix of functions denoted ( )ωQQS , where ω  denotes 
frequency. The diagonal elements are autospectral densities of the individual excitation 
random processes at the system degrees of freedom, and the off-diagonal elements are the 
cross-spectral densities between distinct input random processes. 

In practical situations, structural systems excited by stationary random inputs quickly 
attain a stationary state of response and, therefore, they possess their own spectral 
densities. The response is a stationary random process and is denoted ( ){ }∞<<∞− t,tX . 
The auto- and cross-spectral density functions involving random responses at the degrees 
of freedom of the analyzed system are contained in: 

( ) ( ) ( ) ( ) ∞<<∞−= ωωωωω *THSHS QQXX   (4.1) 

where ( )ωH  is the matrix of frequency response functions for the system. The i(th) row-
j(th) column element in ( )ωH  is the frequency response function at degree of freedom i 
associated with excitation at degree of freedom j. The (i)th row – (j)th column element in 
the matrix ( )ωXXS  is the cross-spectral density between the random responses at the 
(i)th and (j)th degrees of freedom. The diagonal elements in ( )ωXXS  are the autospectral 
densities of the responses. When the structural system characteristics are deterministic 
quantities this is a deterministic expression relating the second order averages (in the 
frequency domain) of the excitation to those of the response. 

When the structural system characteristics are random variables or random fields then the 
relation in Eq. (4.1) is probabilistic. That is, each function in the matrix ( )ωH  is a 
(complex valued) random process, and, in general, all the random processes are 
statistically dependent. By specifying the probabilistic character of some or all the 
structural system parameters and using them in a probabilistic analysis we are able to 
specify the probabilistic character of the response spectral density matrix ( )ωXXS . Some 
methods for accomplishing this are the Monte Carlo method, first and second order 
reliability methods, the advanced mean value method, and the stochastic finite element 
method. To denote the potential for expression of the frequency response function matrix 
and the spectral density of the response random processes to be dependent on random 
parameters in the structural system, we write: 
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( ) ( ) ( ) ( ) ∞<<∞−= ωωωωω AHSAHAS QQXX ,,, *T   (4.2) 

where A is a vector of random variables that describes randomness in the structural 
system. 
In a following section on validation of structural dynamic models, we will propose that 
the validation metric be defined in terms of a windowed autospectral density. Let 

( ){ }∞<<∞− t,tX  denote the response at a point on the structure, and let 
( ) ∞<<∞− ωω ,,S XX A , denote its spectral density. (This is one element from the 

diagonal of the matrix defined in Eq. (4.2).)  A mean square response metric that is a 
windowed function of ( ) ∞<<∞− ωω ,,S XX A , can be defined: 

( ) ( ) ( )∫= ωωωωωΣ d,S,W, XXccXX AA2    (4.3) 

where ( )c,W ωω  is a suitably defined spectral window centered at the frequency cω . The 
probability distribution of this quantity is a function of the joint probability distribution of 
the elements of A. Some structural system parameters will be taken as random variables 
in the numerical example to follow, and the probability distribution of ( )A,cXX ωΣ 2  will 
be estimated using the Advanced Mean Value Method.  

4.3 The Bootstrap 

Our objective in mathematical model validation is to compare the computed and the 
experimentally estimated spectral densities for a structural system in a probabilistic 
framework. The previous section showed how the probability distribution for a metric of 
the computed spectral density might be obtained. We now show how the statistical 
character of a metric of spectral density estimated from experimental results might be 
defined. The method to be used is the bootstrap. The bootstrap is a technique for 
statistical analysis of measured data. The data may be non-Gaussian and not Gaussian-
related, as is often the case for extreme responses of mechanical systems. The data may 
be limited in quantity, though clearly, only those extremes of response represented in the 
data can be assessed, and the probabilities associated with rare events can only be 
accurately assessed to the degree permitted by the amount of data available. The 
statistical measure of interest may be one of the classical measures of random data 
behavior or something more complicated (as in the present application).  

The fundamental idea behind the bootstrap is that data measured from a random source 
are treated, for purposes of statistical estimation, as though they completely describe the 
random source. For example, when the data n,...,j,x j 1= , are measured from a scalar 

random source we may be interested in estimating some parameter θ of the probability 
distribution from which the data emanate. We might use a formula ( )xgˆ =θ  (where 

{ }nx,...,x,x 21=x , and the formula is obtained, for example, through maximum 
likelihood estimation) to estimate an estimator of the parameter θ. Normally, we are 
interested in assessing the quality of the estimator θ̂ , by approximating its bias, standard 
error, or we may wish to use it to estimate confidence intervals on θ. When the data 
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n,...,j,x j 1= , come from a Gaussian source, and when the parameter is compatible with 
classical analysis, this assessment can be done using the classical theory of statistics. In 
other situations, the bootstrap can be useful. 

In the current application we seek to extend the use of the bootstrap to the assessment of 
statistics of the spectral density of a stationary random process. We do so in the following 
way. Assume that one realization of a scalar random process ( ){ }∞<<∞− t,tX  has been 
measured and denote it ( ) Tt,tx ≤≤0 . Sample the signal in discrete time at a time 
increment ∆t, separate the measured realization into M segments of equal length, n, 
window each segment, if desired, using for example, a Hanning window, and denote the 
results Mjj ,...,1, =x . Each jx  is a column vector of length n. The segments represent 
separate measured realizations of the stationary random process. Based on these 
segments, the spectral density estimator for the random process is: 

( ) 202

1

2
/n,...,k

Mn
tCfĜ

M

j
kjkXX == ∑

=

ξ∆    (4.4) 

where M,...,j,n,...,k,kj 110 =−=ξ , is the discrete Fourier transform of the vector jx , 
and C is a constant that accounts for the windowing of the measured signal segments. 

The statistical behavior of the spectral density estimator can be approximated using the 
bootstrap. To do so, create a bootstrap sample of the random process realizations by 
selecting M integer-valued random numbers from the interval [1,M]. Denote these 
numbers M,...,i,ji 1= , and use them as indices. (The sequence of numbers 

M,...,i,ji 1= , may contain duplicates of one or more digits in [1,M], and some of the 
values in [1,M] may not be present.) Create a bootstrap sample based on these indices. 

    { }
Mjjj

*
b ,...,, xxxx

21
=     (4.5) 

Now use the elements of the bootstrap sample *
bx  as in Eq. (4.4) to obtain a bootstrap 

replicate of the spectral density estimate, ( )( )*bkXX fG . Repeat this procedure B times to 
generate an ensemble of bootstrap replicates of the spectral density estimator 

( )( )*bkXX fG , b=1,…,B. These functions form the basis for the approximate statistical 
analysis of the spectral density of the stationary random process. 

We will propose later in this paper that the validation metric be defined in terms of a 
windowed autospectral density. Such a quantity can be defined in terms of the bootstrap 
replicates of the autospectral density: 

  ( )( ) ( ) ( )( ) B,...,bfĜfWfˆ

k

*
bkXXck

*
bcXX 12 ==∑Σ   (4.6) 



 

 40

where ( ) 20 /n,...,k,fW ck = , is a suitably defined spectral window function. For each 
value of b, the quantity on the left is a realization of a scalar valued random variable, 

( )cXX fˆ 2Σ . Let us refer to it as windowed spectral density. We take the random variable 

as being completely characterized by the ( )( ) B,...,b,fˆ *
bcXX 12 =Σ . The bootstrap uses these 

realizations to approximate bias, standard error, and confidence intervals for the 

windowed spectral density. The replicates ( )( ) B,...,b,fˆ *
bcXX 12 =Σ , can be used to 

completely describe the sampling distribution of the windowed spectral density, 
( )cXX fˆ 2Σ . This is done in the example that follows. 

4.4 Validation of Structural Dynamics Models 

The previous two sections have defined analytical and experimental versions of a 
windowed spectral density metric. The former is a random variable ( )A,cXX ωΣ 2  which 
depends for its stochastic nature on a vector of random variables, A, relating to structural 
system randomness. The latter is a random variable ( )cXX fˆ 2Σ  which reflects randomness 
connected to execution of a (single) random vibration experiment (on a single structure). 
(Randomness connected to system-to-system variability would need to be handled 
differently.) Let cc fπω 2=  and assume that the spectral windows, 

( ) ∞<<∞− ωωω ,,W c  and ( ) 20 /n,...,k,fW ck = , used to define the two random 
variables have equivalent properties. Then the two random variables describe equivalent 
measures of the mean square response of the analytically described and the 
experimentally described random process. Define: 

   ( ) ( ) ( )cXXcXXc fˆ,fZ 22 ΣωΣ −= A     (4.7) 

This is a random variable, and it might be called the margin of conservatism of the 
mathematical model in the neighborhood of the frequency cf  and at a single point on the 
system. (The following development considers only validation of a model with respect to 
its predictions at a single point. Multiple validations will be necessary to assess model 
sufficiency with regard to its various predictions.) Once we estimate its probability 
distribution, we can assess the level of conservatism of the mathematical model. As 
mentioned previously, there are several ways to accomplish this. In the following section 
we do so using the Advanced Mean Value Method. Because the analytically and 
experimentally derived metrics of windowed mean square response are statistically 
independent, the process of estimating the probability distribution of ( )cfZ  based on the 

probability distributions of ( )A,cXX ωΣ 2  and ( )cXX fˆ 2Σ  is greatly simplified. 

A probabilistic/statistical validation criterion can be defined in terms of the random 
variable ( )cfZ , or in terms of a collection of variables ( ) N,...,k,fZ k,c 1= , if indeed the 
random variable is defined at multiple center frequencies, N,...,k,f k,c 1= . There are 
many possible criteria. Here are a few. 
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When we are only interested in knowing whether the mathematical model of a system is 
conservative, we might define a validation criterion as follows: 

 Define a collection of frequencies N,...,k,f k,c 1= , at which validity of the 
mathematical model is to be tested. 

 Estimate the probability distribution of ( ) N,...,k,fZ k,c 1= , at each frequency. 
 For all frequencies below a cutoff value, cutofff , require that a fraction equal 

to or greater than 01 β−  (where 10 0 <<< β ) of the probabilities 
( )( )0>k,cfZP  exceed the level 01 α−  (where 10 0 <<< α ). 

 For all frequencies above the cutoff value, cutofff , require that a fraction 

equal to or greater than 11 β−  of the probabilities ( )( )0>k,cfZP  exceed the 
level 11 α− . 

If the model satisfies the criterion, then it is validated with respect to its mean square 
behavior, over the frequencies tested, at the (compound) level specified at the structural 
location under consideration. 

When we are interested in the accuracy of a mathematical model we might define a 
validation criterion as follows: 

 Define a collection of frequencies N,...,k,f k,c 1= , at which validity of the 
mathematical model is to be tested. 

 Estimate the probability distribution of ( ) N,...,k,fZ k,c 1= , at each frequency. 
 For all frequencies below a cutoff value, cutofff , require that a fraction equal 

to or greater than 01 β−  of the probabilities ( ) ( )[ ]( )kckc fZVfZP ,0, κ≤  

(where 0κ  is a constant and [ ]⋅V  denotes the variance) exceed the level 01 α− . 
 For all frequencies above the cutoff value, cutofff , require that a fraction 

equal to or greater than 11 β−  of the probabilities ( ) ( )[ ]( )kckc fZVfZP ,1, κ≤  

exceed the level 11 α− . 
If the model satisfies the criterion, then it is validated with respect to its mean square 
behavior, over the frequencies tested, at the (compound) level specified at the structural 
location under consideration. 

In addition to simply requiring that the mathematical model be conservative or accurate, 
we may also seek to control the accuracy of the analysis and/or the accuracy of the 
experiment. In addition to requiring all the elements defined above, in either case, we 
might also require: 

 For all frequencies below a cutoff value, cutofff , require that a fraction equal 

to or greater than 01 γ−  (where 10 0 <<< γ ) of the standard deviations of the 

random margins of conservatism satisfy ( )[ ] 0,
λ≤

kcfZV  (where 0λ  is a limit 

on the magnitude of the standard deviation of the random variable ( )kcfZ , ).  
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 For all frequencies above a cutoff value, cutofff , require that a fraction equal 

to or greater than 11 γ−  of the standard deviations of the random margins of 
conservatism satisfy ( )[ ] 1, λ≤kcfZV . 

This requirement has the effect of imposing a standard of accuracy on the physical 
experiments performed to obtain the probabilistic description of ( )cXX fˆ 2Σ  and the results 

of the analysis that leads to the probabilistic description of ( )A,cXX ωΣ 2 . The latter 
requirement, though it flows from analysis, is actually also a requirement related to 
experimentation. The means to diminishing the degree of unpredictability in the random 
variable ( )A,cXX ωΣ 2 , to the degree this is possible, is to diminish the degree of 
uncertainty in the random vector A. This can be done through increased duration of 
experimentation, improved quality of experimental hardware, etc. That is, it is achieved 
by spending more money on experiments. 

As emphasized in Section 2 above, the general approach proposed here for model 
validation is useful in the sense that it permits the comparison of analytical to 
experimental results. However, the analyst might be interested in characterizing the 
validity of a mathematical model for prediction of system responses that were not tested. 
In that case, a scheme for performing model validation starts with the performance of a 
sequence of model validation experiments. These should bound and inhabit the parameter 
space of potential interest in one or more applications. The mathematical models that 
correspond to the validation experiments are then constructed, and “point” validation 
analyses, like the ones described above, are performed. The results of these comparisons 
might then be used to infer the degree of validity of mathematical models without 
corresponding validation experiments. The inference might be accomplished through 
interpolation of the point results.  

4.5 Example 

Elements of the techniques described above are now applied to a simple system for 
purposes of demonstration. A schematic of the physical system whose mathematical 
model was tested for validity is shown in Figure 4. It is a monolithic structure (no joints). 
It is a steel bar with material properties assumed to equal standard values. 

A finite element model (FEM) of the system was constructed in MSC/PATRAN Version 
8.5. The finite element analysis was performed in Salinas, a Sandia-developed structural 
dynamics finite element analysis program.  The beam was modeled with free-free 
boundary conditions and the modal characteristics of the system (i.e. mode shapes and 
frequencies) and mass and stiffness matrices were obtained. Convergence of the model 
was examined with respect to modal frequencies and windowed spectral density. The 
model was deemed converged based on this examination. Post-processing of these results 
was done in Matlab. It is critical to note that the analyst is required to specify modal 
damping values for the system in order to obtain the computed frequency response 
functions referred to in Eq. (4.2). Further, it is desirable to specify these damping values 
in a predictive manner, without reference to the measured data, because it is intended that 
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the mathematical model be available for use where its accuracy cannot be confirmed with 
experiments. Based on expert opinion and prior experience testing systems with no joints, 
we estimate (conservatively, it is hoped) that the system under consideration has modal 
damping factors with a mean value of 0.001, and a coefficient of variation of 0.2. We 
further assume that the modal damping factors are independent random variables, and that 
they have lognormal probability distributions. These characteristics were used in all the 
following calculations. 
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Top View

Side View

 

Figure 4:  Schematic of physical system 
 
 
Experimental data were also obtained for this system by testing it in random vibration.  
Test parameters were chosen as typical values for a test of this type. The spectral density 
of the force excitation was estimated using standard procedures.  

The estimated spectral density of the force excitation was assumed to precisely represent 
the spectral density of the random process underlying all force realizations for this 
physical system. It was used, along with results obtained from the finite element model 
described above and the assumed mean value of the modal damping factors, in Eq. (4.2) 
to estimate the response spectral densities. In addition, spectral density of the response 
was estimated using measured data.  

The probabilistic character of the windowed metric of the calculated response spectral 
density was estimated over four frequency bands. A Hanning window was used. (This is 
simply a haversine.) The center frequencies and widths are listed below: 

 Window center frequencies: 100, 178, 316, 562 Hz 
 Window frequency widths: 150, 267, 474, 844 Hz 

The probability distribution of each of the metrics is not a standard form.  

The bootstrap was used to estimate realizations of the experimentally-based spectral 
density estimate. Each realization was windowed using the windows described above. 
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The resulting areas were used as the basis for inferring the statistical character of the 
experimentally established windowed metric of the spectral density.  

To judge the validity of the finite element model, it was assumed that the windowed 
metrics of the spectral density follow a normal probability distribution in both the 
analytical and experimental cases.  (A more sophisticated numerical probabilistic analysis 
could have been performed.) A simple form of the first validation procedure listed in the 
section entitled “Validation of Structural Dynamics Models” (the one related to 
conservatism of the model) was used to validate the present finite element model.  It was 
required that the probability that the margin of conservatism defined in Eq. (4.7) exceed 0 
for all four windowed metrics be equal to or greater than 0.90. The probabilities were 
calculated, and are plotted for the fours spectral windows in Figure 5. 

It is clear that, in this case, the finite element model passes the test, and is judged 
conservative. It is most likely, though, that the mathematical model would not pass any 
reasonable test of accuracy. In other words, not only is the model conservative, it is 
probably overly conservative by any reasonable standards. 

 
 
 

 
 

Figure 5. Probability that the margin of conservatism defined in Eq. (7) exceeds 0. 

One more fact was recognized in this analysis. The standard error of the estimated 
spectral density is relatively small, in this application. Therefore, the standard deviations 
of the windowed metrics of the experimentally estimated response spectral density are 
also small. One reason is that the physical system is a monolithic beam. There are no 
joints in the system whose characteristics might vary as the physical test progresses. A 
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second reason is that the system was only tested once to obtain the results. That is, the 
experimental setup was not dismantled then reset. Variation in the placement of 
transducers and differences among transducers would have caused increased variation. 
Third, only one system was tested. System-to-system variation would have caused 
increased variation. 

4.6 Final Comments 

An approach for the practical validation of mathematical models of structural dynamic 
systems has been outlined. It is based on a windowed metric of the spectral density of the 
response at one or more points on the system, and it is related to the mean square 
response of the system within user-defined frequency bands. Because response spectral 
density and mean square response are useful, fundamental measures of system behavior, 
the validation of a mathematical model using the proposed approach can yield real 
confidence that finite element models are truly useful for prediction of structural 
response, at least in the region of parameter space occupied by the validated mathematical 
model. Rigorous methods for inferring the validity of the particular mathematical model 
under discussion in other regions of parameter space closer to realistic applications and 
based on multiple validation comparisons similar to the one described here need to be 
developed. 

Of course, other metrics for validation of finite element models might be specified. They 
must, however, satisfy the requirements that they provide useful information to the 
designer and analyst, and that they present the reasonable possibility of being satisfied. 

 

5. Thermal Foam Decomposition Case Study Overview 

5.1 Introduction 

In a weapon system rigid foam is used as an encapsulant to thermally isolate and support 
critical components. In an abnormal environment, typically a hydrocarbon fuel or 
propellant fire, the rigid foam will decompose when the temperature exceeds 300 C and 
expose critical components to the harsh thermal environment. Historically, based on a 
single test, radiation parameters in weapon models have been “tuned” to reflect the 
protective effect of foam. More recently conducted experiments and comparisons with 
existing weapon models (Dobranich, 1999) have shown that this approach is not  
adequate for predictive models, thus suggesting that physics-based models are needed for 
foam decomposition in an abnormal thermal environment.  Subsequently, a model has 
been under development and a program has been initiated to validate this foam 
decomposition model (Hobbs et al., 1999). Several aspects of this program make it 
suitable for a case study in the VMP.  Among other things, this program provides for: 

 Quantitative comparison of model predictions with experimental 
measurements for a case with complexity relevant to nuclear weapon models. 

 Mapping the requirements for the phenomenon-centric validation from the 
(weapon) application-centric requirements. 
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 Quantifying the coverage of the present validation experiments for the foam 
decomposition model. 

 Studying the interaction between validation experiments at different 
complexity levels -- the interaction between purely foam decomposition 
experiments with experiments having foam decomposition interacting 
(nonlinearly) with thermal diffusion and radiation.  

5.2 Foam Decomposition Model 

An extensive study of the chemical structure of the foam and its evolution due to a 
thermal insult has been used to develop a thermal decomposition model (Hobbs et al., 
1999). This decomposition model (termed CPUF) relies on four fundamental models: 

1. Foam structure –initial population of the most probable structures that comprise 
the chemical structure of the foam. 

2. Chemical kinetics – how the chemical structure evolves in a thermal environment. 

3. Lattice statistics – the relationship between the chemical structure and the macro 
structure of the foam. 

4. Vapor equilibrium – determines the phase (vapor or condensed) of the 
decomposition products. 

 

The foam decomposition model is coupled to thermal diffusion through the energy 
equation (conservation of energy) via two physical mechanisms. The first mechanism is 
through mass loss. Mass is removed from consideration in conservation of energy as the 
foam model predicts the loss of mass due to decomposition. The second coupling 
mechanism is through energy removal from the chemical (decomposition) reactions. 
Consequently, the prediction of mass loss, or rate of mass loss, and of thermal effects are 
appropriate to consider for validating the foam model, if they can be measured 
experimentally.  

5.3 Validation Data 

Two types of experiments have been conducted to support validation of the CPUF model 
for application to abnormal thermal environment scenarios. First, experiments to study 
the basic model and calibrate specific model parameters were conducted. These were 
TGA (ThermoGravimetric Analysis) experiments. Second, a series of experiments with 
foam dimensions comparable to those in a weapon model were conducted. Each 
experimental study and the available physical data are summarized below.  

5.3.1 TGA (ThermoGravimetric Analysis) Experiments 

A detailed discussion of these experiments is given in Erickson et al. (2001) and briefly 
summarized here. TGA experiments were conducted on foam samples with a mass of 
nominally 5 mg. The small foam samples were exposed to a measured and controlled 
thermal environment while its mass is monitored. These experiments were used to 
demonstrate that the foam model was based on appropriate physical mechanisms and to 
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calibrate aspects of the model. The TGA experiments studied response to various thermal 
environments 

 

1. Isothermal experiments at 270, 300, and 330 C. The experiment ramped the 
temperature quickly (in approximately 10-15 minutes) to the indicated 
temperature and held. 

2. Dual isothermal experiments. The experiments started with an isothermal 
experiment at 300 C that was held for a period then increased to 380, 400, and 
420 C and held for the duration of the experiment. The process began as outlined 
for the isothermal experiment, after approximately 2 hours when mass loss was 
minimal the temperature was ramped and held at the final isothermal temperature. 

3. Non-isothermal experiments. Temperature was continuously ramped from its 
initial value at a constant rate of 5, 20, or 50 C/minute.  

 

Because the decomposition is known to depend on the pressure, additional experiments 
investigating the effect of pressure for the same thermal environments identified 
previously was studied. Pressures of 1-70 atm were investigated. The data available from 
TGA experiments are the time-resolved solid mass fraction and foam temperature. 

Experiments were conducted at two laboratories (SNL and BYU) with TGA apparatuses 
with (quite) different designs. The data at pressures greater than ambient were collected at 
BYU and ambient pressure data were mainly collected at SNL. Some ambient pressure 
experiments were conducted at BYU allowing for laboratory-to-laboratory comparison.  

Representative data for experiments at ambient pressure are shown in Fig 6. TGA data 
were used to calibrate parameters in the foam decomposition model. Many model 
development activities have roots similar to this activity. Fundamental experiments are 
conducted to develop a model and identify pertinent physical mechanisms and then the 
experiments are used to calibrate the model. After a certain level of confidence is 
established in the model, the focus shifts from model development to model validation. 
How to utilize the experimental data, some or all of which may have been used to 
calibrate parameters in the model is an open issue to be address in this project.  

A significant database of TGA experiments has been collected; 10s to potentially 100s of 
experiments may be utilized. The database has sets of repeated experiments and 
investigates various aspects of the experimental procedure. Furthermore, experiments 
were repeated at different laboratories to identify potential laboratory bias. Hence there is 
necessary data to quantitatively estimate experimental uncertainty and independently (of 
the model) study the experimental error.  
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Figure 6. Representative data for TGA experiments 

 

5.3.2 Component Scale Experiments 

A series of component-scale experiments on cylindrical foam specimens (nominally 8.8 
cm in diameter and 16.4 cm long) have been conducted. The experiment and data are 
summarized here; see Bentz and Pantuso (1999) for more details. A schematic of the 
experiment is shown in Fig 7. The foam is contained in a thin-walled stainless steel 
sleeve that is instrumented with thermocouples along its axial length. A plate of 0.375 
inch thick stainless steel (304) is welded to the sleeve to form a “cup” container for the 
foam specimen. Heating lamps control the temperature of the plate to maintain a fixed 
value. At a plate temperature comparable to an abnormal thermal environment the foam 
will begin to decompose near the plate. The decomposition front will recede away from 
the plate.  

A matrix of 15 experiments has been conducted. The experimental matrix addresses the 
effects of:  

1. Plate temperature (600, 750, and 900 C). 

2. Foam density (5.7 and 22.7 lb/ft3). 
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3. Heating orientation (with respect to gravity) of the plate (bottom, side, and 
overhead). 

4. Component embedded in the foam (steel slug or aluminum shell). 

 

The (spatially varying) sleeve temperature and plate temperature are measured during the 
experiment. Additional available data include: i) time-resolved temperature 
measurements from thermocouples within the foam specimen, ii) transient X-ray images 
showing the location of the foam front as the experiment proceeds, iii) time-resolved 
temperature response of internal components (when applicable). Typical data for the 
sleeve and plate temperature and a x-ray image are shown in Fig 8 (a model prediction is 
shown with the x-ray image).  

The experimental data has several uncertainties associated with it. For quantitative values 
of the front location, the x-ray is digitized and analyzed with image processing software. 
Assembling a time-series of x-rays provides front location as a function of time. 
Judgement is required to identify the location of the front in the digitized x-ray. The 
sleeve and plate temperatures are measured with thermocouples, as are temperature 
measurements within the foam. Random measurement errors can be estimated in the data, 
but systematic (bias) errors may be difficult, possibly impossible, to quantify with any 
confidence.  

5.4 Model Predictions 

5.4.1 TGA Experiments 

Model predictions for the TGA experiments only involve the CPUF model (Hobbs et al. 
(1999). With the measured temperature history of the foam as an input and 18 parameters 
describing the decomposition chemistry, CPUF calculates the solid mass fraction. These 
inputs represent the more obvious components of x; see Eq. (3.1). Additionally, inputs 
defining the (initial) chemical structure of the foam, macro-structure, and the equation of 
state are required.  

The process of calibrating the model uses the measured foam temperature and selects the 
remaining (18) parameters to minimize the difference between the measured and 
predicted solid fraction. Calibration can be performed on all TGA experiments, subsets, 
or even a single experiment. The appropriate balance between insight to the parametric 
fitting and insight to the validity of the model must reached. This balance will be studied 
to some extent. At minimum, a subset of experiments will not be used for calibrating, 
allowing for the comparing model predictions with the experimental data.  
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Figure 7. Component scale experiment. 

 

 

Figure 8. Data from component scale experiments. 
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The potential sources of uncertainty in the predicted solid fraction from CPUF are:  

1. chemistry parameters (18) 

2. measured foam temperature 

3. initial foam structure 

4. vapor-equilibrium model.  

Since the chemistry parameters are being estimated, confidence intervals on the resulting 
estimates can be established during the calibration. The remaining sources of uncertainty, 
to a certain extent, are convolved into the calibration constants.   

5.4.2 Component-scale Experiments   

The computational model of the component-scale experiment has coupled models of 
thermal diffusion, radiation, and foam decomposition (CPUF). The coupled models are 
implemented in the finite element code Coyote (Gartling et al., 1994a,b). The complete 
computational capability is not yet available in the ASCI code Calore, but will be by the 
end of FY 2001. There are two important issues to realize in this validation study. Using 
this experiment to study the validity of the CPUF model, depends on the validity of other 
models, mainly thermal diffusion and enclosure radiation. Although the validity of these 
additional models (diffusion and radiation) has not been quantitatively studied, the 
models are generally accepted as valid physics models.  Second, the (necessary) 
approximations to model the experiment may impact the outcome of the validation study. 
We need to reconcile to what extent the modeling approximations are relevant to the 
application. 

The computational model is summarized. The apparatus is approximated in the 
computational model as 2D axis-symmetric.  One can visualize the model as a cup filled 
with foam. The measured temperature along the sleeve is input as the boundary 
temperature at the outer radius of the cup. The measured plate temperature is input as a 
boundary condition on the end of the cup. As the foam front recedes from the end of the 
cup a cavity develops. The model assumes the energy within this cavity is exchanged by 
only radiation. Furthermore, the decomposition gasses that occupy the cavity do not 
participate.  

Several parameters in the computational model reside in φ; see Eq. (3.1).  Recall that 
these parameters only impact the model predictions. At least two parameters are possibly 
important. The first is the element size, particularly at foam decomposition front. A grid 
resolved solution requires elements on the order of 25-50 µm. Because the element size is 
not reasonable for large-scale models, a bias-correction was developed to allow for larger 
element sizes. The second parameter is a density threshold for removing elements from 
the mesh. The typical value removes an element from the model when the condensed 
phase of the foam is less than 1% of its initial value. 

Addressing the model uncertainty and alignment between the experiment and model for 
this experiment is more involved than the previous (TGA) experiment. Identifying the 
sources of uncertainty and potential misalginment, and approaches to quantify these are 
effects are to be addressed in this study.  
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5.5 Validation Issues 

The goal of the validation analysis for this case study is to analyze sets of computational 
predictions and experimental outcomes for these foam decomposition experiments in 
order to characterize the current predictive capability of the computational models.  
Different validation metrics will be tested and evaluated to address some of the 
challenges that were discussed in Section 3.  Additional methodologies to quantify 
confidence will be studied and documented.   
 

The case study will in particular address several questions, including the following: 

1. Are the phenomenon-centric validation activities, such as the TGA experiments, 
adequately linked to the applications for which the model will be ultimately used?  

2. What is the appropriate metric, as well as the rationale and process for selecting 
the metric, by which to judge predictive capability of the foam model for the 
intended application? What measurements and predictions do we compare? 

3. Is the parameter range over which the model must be validated for the application 
compatible with the parameter range of the existing experiments? 

4. Do the existing experiments provide an adequate basis for characterizing 
predictive capability at selected experimental conditions and to infer predictive 
capability at additional conditions?  This question may be specifically addressed 
by dividing the available set of experiments into two sets. On one set of 
experiments we could develop an appropriate validation metric and a method for 
predicting it beyond that set of data. We could then test the performance of the 
prediction method by comparing the prediction with the second set of data. 

5. Can we integrate or otherwise relate different levels of experimental complexity? 
The TGA experiments address essentially single physics phenomena pertaining to 
the thermal decomposition of the foam. The component experiments involve 
multi-physics phenomena, including foam decomposition, radiation exchange, and 
thermal diffusion. The two experiments provide a testbed to begin to study the 
interplay among a hierarchy of experiments.  In particular, we will investigate to 
what extent information about predictive capability at the single-physics level can 
be carried forward to evaluate predictive capability at higher levels. 

6. Success Metrics and Path Forward 
First and foremost, success for the VMP in FY 2001 is defined by documented work on 
the case studies described in Sections 4 and 5. Our hope is that the planned work on these 
case studies will be successful in the terms defined in these sections. If this is true, then 
the work on the case studies should extend naturally in future years. Since these case 
studies are also oriented towards ASCI applications mileposts at Sandia directed at 
Normal and Abnormal environments (DOE, 2000), any VMP success in FY 2001 will 
increase the likelihood that the case studies will be a successful component of these 
mileposts. 
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As well, a major ASCI V&V program milepost in FY 2002 (DOE, 2000) is to provide a 
first demonstration of validation methodology for Normal and Abnormal environments 
modeling. We are supporting progress toward achieving the FY 2002 V&V milepost by 
working on these case studies in FY 2001. Successful work on the FY 2001 case studies 
should facilitate future work directed to this milepost. 

Finally, an ASCI milepost exists in FY 2004 (DOE, 2000) that targets first application of 
uncertainty quantification to support stockpile analyses utilizing ASCI computational 
models. Our work on the VMP can be considered a prototype of the kind of work that 
will be required to achieve the UQ milepost. Success in the VMP in FY 2001 should 
provide input into the type of work we should be performing to successfully achieve that 
milepost. 

If the proposed technical work on one or both of the case studies fails to achieve the 
success defined for that particular case study, then the documentation of the work is still 
important. As part of the path forward for FY 2002 emerging from the FY 2001 work on 
the VMP we intend to document our lessons-learned, whether positive or negative. This 
helps suggest alternatives and reduces the likelihood of repeating mistakes in later work. 
Success must be measured by the final delivery of these documented work products. 

The documentation of a useful path forward from FY 2001, including the FY 2001 
lessons-learned, is an important component of our definition of success. Aside from the 
specific information that can be documented from the work on the case studies, we intend 
to have the following components in such a document: 

 Generalization of the results from the case studies. It is important to widen the 
scope of the technical methodologies we believe to be useful as rapidly as 
possible, given the wide scope of the Defense Programs workload at Sandia. 
Included in this will be our best approach to a roadmap for model validation to 
guide other participants in ASCI and experimental programs at Sandia. 
Practices recommended in this roadmap should be practical and relatively 
simple.  

While model validation per se has been recognized to be key to increased 
confidence in the use of computational predictions, little guidance has been 
developed for just how the process should work.  Inquiring minds want to 
know:  What do we do and how do we do it?  How will we know if we’re 
successful?  The VMP should provide guidelines that are as definitive as 
possible as quickly as possible. Success will be measured by utility of the road 
map we develop in the path forward document. 

As an independent element in the service of this goal, we also intend to deliver 
a second document that has guidelines for appropriate validation data and 
model – data comparisons. These guidelines must constrain the validation data 
and model – data comparisons that will be elements of the proposed roadmap. 
For example, we have distinguished “validation experiments” from 
“phenomena exploration and discovery” experiments in this report. The 
distinction is indeed critical, but we have not devoted detailed attention to 
defining it clearly. The detailed exposition of this topic is part of the content 
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of our planned paper discussing guidelines for validation experimental data 
and comparisons of numerical models with such data. This document will also 
include the results of an effort to understand and document the full scope of 
potential validation experimental data that the ASCI models at Sandia expect 
to deal with. Success will be measured by the utility and robustness of the 
guidelines as they are used by future model validation projects at Sandia. 

 The focus of the current case studies is on phenomenon-centric validation. We 
are not likely to have the opportunity this fiscal year to integrate information 
on predictive capability for different single-phenomenon computational 
predictions to obtain statements about predictive capability of a combined 
multi-phenomena computational model.  Thus, the path forward is to develop 
ideas to extend these case studies in this direction, and to identify subsequent 
case studies that require this integration. Presumably these further case studies 
would be appropriate for the next phase of the VMP in FY 2002. 

This integration objective will depend on model structure and the ability to 
decompose the overall model into sub-models and relationships among them.  
With ‘suitable’ (which remains to be defined) relationships and information 
on sub-model predictive capability, we have the opportunity to achieve the 
desired integration.  As we come to understand this problem, there may be 
important implications for model-building. 

 We have hinted here at attendant difficulties associated with resolving the 
fundamental question of “How much validation is enough?” This is properly a 
model qualification issue. As illustrated in the Appendix, properly defining 
Defense Programs requirements for the intended model application and 
translating them into model validation requirements is critical and difficult. 
The VMP will devote little attention to this model qualification problem in FY 
2001. This is a natural area for increased attention in FY 2002. The path 
forward should define how to best focus attention in FY 2002 on this problem. 

Finally, the VMP is properly a single component of the overall ASCI V&V program at 
Sandia. Intrinsically, therefore, VMP project success must be linked to overall success of 
this program. V&V Program success metrics at Sandia are currently being defined. 
Alignment of the FY 2001 VMP with selected program metrics will be discussed in the 
path forward document.  

7. Conclusions 
 

Validation of numerical models encompasses both smaller scale phenomenon-centric 
methodologies and larger scale applications-centric methodologies. The passage from a 
smaller scale validation effort, which tends to have better characterized data and model 
constraints, to more complicated applications of the type of interest to Defense Programs 
at Sandia is a complex task that is worthy of ongoing research and development. The 
overall goal of model validation, as we see it, is to provide a credible and defensible 
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quantified level of confidence in the predictive capability of the model for specific 
targeted applications of complexity comparable to that of important Defense Programs 
applications. Whether this goal can ever be achieved is a fair question. And, determining 
whether the deduced confidence is sufficient for the ultimate task, which is typically the 
use of the model in a weapon exploration, design or qualification program, is very 
important. But this determination lies well beyond the specific scope of model validation 
projects in general, and certainly of the VMP. Model validation provides necessary 
information for making this determination, but is insufficient by itself. 

We believe that validation of models for specific applications requires a complicated 
blend of analytical, numerical, statistical, and experimental skills. This speaks to the 
difficulty of the process. The basic elements are presented in this report. The difficulty 
lies in the details. There is not a unique set of steps one follows to establish model 
validity for a complex application. Validation is a continuous process that must adapt as it 
progresses. The goal of the VMP is to demonstrate and develop one or more validation 
processes, including the necessary support tools that have promise of being more 
generally applicable to other model applications tasks. 

We have stressed that the validation process involves several key elements. The detail 
and level to which each element is addressed will potentially influence whatever level of 
final confidence we may succeed in determining for the model. Focusing on only a single 
element will likely not benefit the overall model validation process. The elements we 
have discussed to some degree in this report include (1) the definition of the model itself, 
and most certainly the application requirements that drive it; (2) the requirements for and 
availability of appropriate validation experiment data; (3) quantitative confidence in the 
selected validation experimental data, typically as expressed through quantification of 
uncertainty of the validation experiments; (4) quantitative understanding of the 
uncertainty imbedded in the model predictions that are compared to the validation 
experiment data; (5) specific methodologies for comparison of model predictions and 
experimental data that properly treat the uncertainties in both the model and the data; and 
(6) methods for inferring predictions of model error that are based on these comparisons 
and which assess our uncertainty in this prediction. 

In conclusion, we stress that in our view the proper way to understand model validation is 
as the assembly and application of a set of tools and methodologies. These include (1) 
sensitivity analysis; (2) methods of uncertainty quantification for both model and 
experiment; (3) statistical tools for inference in the presence of uncertainty; and (4) 
elements of formal experimental design.  

The VMP is completely centered on researching, developing, and applying technical 
methodologies that enable the quantitative characterization of confidence in model 
predictions based on the canonical validation activity – the comparison of experimental 
data with model predictions. The intent of the project is to document the nature of these 
methodologies and our experience applying them to relevant case studies. The project 
will also perform work deemed to be necessary to provide the greatest opportunity for the 
generalization of these methodologies to other pressing Sandia validation activities. 
Finally, the project will perform work that supports ongoing efforts to define and begin to 
apply to qualification processes that are required to determine whether the level of 
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confidence in the model achieved through the application of validation metrics 
approaches is sufficient in particular applications. 
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Appendix - Weapon Stockpile Requirements Underlie Model 
Validation Requirements 

A.1 The Weapon-in-a-Fire Safety Assessment Problem 

A number of probabilistic risk assessments have concluded that fire, either alone or in 
combination with other factors (mechanical/electrical) is a dominant contributor to risk of 
inadvertent explosion of weapons. To support weapon design and certification efforts 
with regard to weapon safety in fire environments, several ASCI codes are presently 
being developed. The FUEGO/SYRINX (Moen et al., 2001; Burns et al., 2001) fire 
modeling capability will reflect the current  state of understanding of hydrocarbon fuel 
fires. Joined with the ASCI heat transfer code CALORE (Lober et al., 2001) for 
predicting weapon thermal response, the fully integrated weapon-in-a-fire (WIAF) 
simulation capability promises to significantly surpass the capabilities in previous large-
scale simulation efforts on behalf of weapon design and certification for abnormal 
thermal environments. Predictions of the thermal response of a weapon in a fire allow 
identification of weapon explosion risk in specific Stockpile-to-Target Sequence (STS) 
heating environments and conditions that the weapon might credibly encounter.  
Calculated risk in these environments can be compared to set certification criteria for the 
acceptable level of risk, which can then serve as a basis for deciding whether the existing 
design is good enough or if design improvements or additional deployment controls are 
required to reduce risk to acceptable levels. 

Validation requirements for the WIAF modeling capability are ultimately tied to weapon 
risk certification requirements in the applicable STS environments.  This appendix traces 
these top-level requirements into explicit and implicit requirements on model validation 
and the model validation process. 

The scenario space of interest for this stockpile driver involves all credible thermal 
accident scenarios that can occur over the entire life span of the given weapon from 
creation to disassembly. As such, the STS-driven validation space for the 
FUEGO/SYRINX/CALORE WIAF modeling capability is very broad. Figure A1 shows 
the most important parameters that characterize this space for the weapon-in-a-fire 
problem.  Important parameters not evident from the figure include axial extent of the fire 
along the weapon, and rotational orientation of the weapon relative to the fire. Also, the 
barrier drawn in the figure is meant to generically represent any physical objects, barriers, 
packaging (e.g. a shipping container), and/or envelopment (i.e. immersion or partial 
immersion in mud, snow, or water) that shield or partially shield the weapon from the 
fire. Selective shielding of limited portions of the weapon can cause preferential heating 
of certain safety-critical components, which can exacerbate the vulnerability of the 
weapon to a fire of given severity (as defined by its characterizing parameters such as fuel 
type, fuel spillage volume and spatial distribution, ground topography and permeability, 
ambient environmental conditions, and the amount of time to effective fire suppression or 
self-extinction). 
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Figure A1. Generic space for the Weapon-In-A-Fire (WIAF) problem. 

 

The entire parameter space of interest is too broad to address without prioritization. 
Prioritization is the first step in any attempt to define reasonable model validation 
requirements. Expert opinion is normally the most cost effective way to globally screen 
and pare down the applicable parameter space to an affordable prioritized subset for 
quantitative analysis. The expertise should span the technical and programmatic aspects 
of the problem being addressed and be applied with a system-theoretic philosophy (Saaty, 
1990). For the WIAF problem, this involves weapon designers at both the system and 
component levels, as well as safety engineering and risk assessment representatives, and 
modelers, experimentalists, and code developers, as well as subject matter experts in 
probability and statistics. 

For the sake of illustration, assume that expert opinion identifies (through a consideration 
of perceived severity and likelihood) the following scenario classes for further 
investigation: 1) an open hydrocarbon pool fire without any wind or weather, 2) an open 
hydrocarbon pool fire with wind but no weather, 3) a facility/enclosure with a 
hydrocarbon fuel fire with moderate venting, and 4) an open propellant fire with no wind 
or weather. Further, within each scenario class, several weapon orientations relative to the 
fire will need to be considered, including: A) weapon fully engulfed by the flame volume; 
B) weapon partially engulfed by the flame volume with and without partial immersion in 
cooling media; C) weapon non-engulfed (a "stand-off" fire) with and without selective 
partial shielding (i.e. "smart fires"). In each of these categories, quantitative analysis and 
optimization are then used to determine significant weapon vulnerabilities over applicable 
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parameters that define shielding and immersion conditions and axial, elevational, and 
rotational orientations of the weapon relative to the fire. Model validation issues are 
intimately involved in the quantitative identification, assessment, and resolution of these 
vulnerabilities as described in the next section. 

A.2 Translation of Stockpile Requirements to Model Validation 
Requirements 

The top-level programmatic requirement for safety embodies an integral numerical 
requirement or "constraint" that the assembled elements of the design and certification 
program must meet. All contributors to the risk assessment "forward problem" and the 
design-for-safety "reverse problem" are constrained by this requirement.  The specific 
preferences of the system and component designers, based primarily on cost, schedule, 
and performance issues, ultimately determine the specific path(s) taken toward satisfying 
this constraint, with input from physics analysts and safety engineers.  This constraint, 
along with others that the designers must meet or approximately satisfy, dictates the 
feasible space of design solutions from which the final qualifying design will emerge. 

 

  

Figure A2. Illustration of Stronglink/Weaklink thermal failure race in risk 
assessment “Forward Problem.” 
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Figure A2 distills the factors ultimately of importance for weapon safety determination. 
For simplicity, a simple "stronglink/weaklink" safety theme is considered in which, in 
order to maintain positive assurance against inadvertent detonation, the weapon's 
stronglink component must outlast the weaklink component.  (More complex cases are 
considered in the risk assessment methodology reports of Carlson et al., 1991 and Bohn, 
1996.) If the stronglink does not maintain normal function at least up until the time the 
weaklink is rendered inoperable ("fails"), then a Loss Of Assured Safety (LOAS) 
condition exists. The top-level programmatic requirement is that the risk probability of 
LOAS must be less than 10-Y per weapon lifetime, where Y is a positive number that 
varies for different STS environments.  

Figure A2 shows hypothetical temperature response curves (the solid curves) for the weak 
and strong links in a weapon subjected to STS abnormal heating conditions identified in 
the screening and prioritization process discussed above. Since fire is a very complex 
process that exhibits stochastic behavior to greater or lesser extents depending upon the 
presiding conditions, the components will experience somewhat different thermal 
response trajectories in different physical tests having nominally the same parameters 
characterizing the fire. Unit-to-unit weapon system hardware variability over several such 
tests would also contribute to thermal response variability, as would measurement 
uncertainty and test-to-test variability. Hence, some variability and uncertainty in 
component response profiles arises from physical sources. Additionally, economic 
constraints force us in general to use computational simulation to run "virtual" weapon-
in-a-fire tests to investigate weapon vulnerability in the priority STS scenarios. In these 
investigations, modeling error and uncertainty combines with physical sources of 
variability and uncertainty to yield total uncertainty. The dashed curves in Figure A2 
indicate corresponding uncertainty distribution contours (say at 5% and 95% cumulative 
distribution levels) of predicted component response. The solid curves are nominal "best 
estimates" of component response derived with physics models that are bias-adjusted or 
"calibrated" from model validation data. We assume that the associated uncertainty 
distributions or bands about these best-estimate predictions have been estimated in the 
model validation process. (The methods discussed in the main body of this report are 
aimed at estimating these uncertainties.) 

The identification of model-form bias error within the resolution allowed by the model 
validation experiments is the initial requirements of model validation. Further, if model 
bias and uncertainty must be reduced to meet system-level objectives, then model 
validation elements also play a key role in deciding the best route toward reducing these, 
and in defining what it might take in terms of modeling and analysis, experiments, and 
submodel/code development activities. This latter "reverse mode" usage of model 
validation information for active improvement of the model is distinguished from, and 
has somewhat different aims and requirements than, the "forward mode" usage for model 
assessment and characterization. The distinctions will become more apparent and well 
defined as we move forward with application of model validation methodologies to real 
problems. 
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As Figure A2 shows, for set temperature thresholds (exemplified in the figure by the solid 
horizontal lines depicting nominal component failure temperatures), uncertainty in 
predicted component thermal trajectories maps into uncertainty in the times at which the 
components are projected to fail. As explained later, the greater the modeling uncertainty 
the greater the calculated and perceived safety risk attributed to the weapon. Decreasing 
the modeling uncertainty can therefore decrease the perceived vulnerability of a weapon 
in a given heating scenario. This in turn reduces the corresponding "thermal hardness" 
margins that must be designed into the weapon for the particular scenario examined. 
Relaxation of such thermal hardness requirements can in turn translate into significant 
cost savings in weapon design and production efforts, as well as considerable 
improvements in weapon attributes such as cost, performance, weight, and so on. 

The graphic at the top of Figure A2 indicates that "total" modeling uncertainty in 
predicted component response is the result of several constituent effects. Consider the 
system-level model validation task of quantifying modeling uncertainty in simulations of 
weapon thermal response to a particular type of fire heating.  If certain conditions are met 
(see Romero, 2001), then system-level uncertainty is the convolution product of the 
individual contributions, allowing a clean decomposition of the system-level 
validation/UQ problem into separate decoupled subproblems. Assuming that such 
complexity separation is allowed in the WIAF problem, Sandia's radiant heat facility 
could be used to subject the weapon to heat fluxes that are either nominal or bounding 
heat fluxes representative of those from a real fire of this type (where the mean flux of the 
real stochastic fire is determined from available measurement data and fire simulations).  
Since flux rates imposed on the weapon can be measured and controlled fairly well in the 
facility, the applied heating boundary condition on the weapon can be represented 
reasonably well in a simulation. Hence, this testing situation provides a good basis for 
isolated validation of the weapon thermal model in the applicable thermal regime. 
Weapon thermal model bias error, and resolution uncertainty thereof, can thus be 
characterized in isolation from the fire. Then, to predict weapon response (with associated 
uncertainty) in a real fire of this type, realistic heat flux boundary conditions must be 
imposed on the weapon model. If available, measured stochastic radiative and convective 
fluxes (including measurement uncertainties thereof) from a prototypical fire can be 
translated into uncertainty distributions of imposed heat flux on the model. Alternatively, 
if the fire itself is being modeled, then modeling bias and uncertainty from applicable 
model validation experiments are combined with estimated stochastic uncertainty to 
determine the uncertainty of the imposed flux on the weapon model. The integration of 
the bias and uncertainty information gained from isolated characterization of the weapon 
thermal response model and fire heating conditions into a total modeling uncertainty is 
then a relatively straightforward process as described by Romero (2001). 

If the necessary conditions are not met for the fire/weapon complexity separation and 
reconvolution tactic above, then various layers of complication (see Romero, 2001) will 
exist, both in determining the uncertainty information (thus the model validation 
methodology requirements and process becomes more complex), and in propagating the 
information upward to determine impact at the system level. In the most extreme case, if 
interaction effects between the weapon and fire are so large that the basis for complexity 
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separation completely breaks down, then the system-level model validation problem is 
not separable into parts, and the inextricably coupled problem must be considered a non-
separable single entity for model validation purposes. This means that a statistically 
significant number of tests must be performed at the full system level to adequately 
characterize system-level modeling ability. In fact, depending on the specific heating 
conditions and weapon characteristics, the full spectrum from completely separable to 
fully nonseparable cases applies for the generic WIAF problem, as specific examples in 
(Romero, 2001) illustrate. 

When we can appeal to complexity separation in system-level model validation, it is 
usually cost effective to do so. At lower levels of complexity, isolated subsets of physics 
and/or hardware are generally more affordably and effectively characterized because 
validation experiments are typically easier to perform, control, and interpret as 
complexity decreases. Complexity separation should in fact be applied recursively where 
legitimately allowed, in order to produce a cascading tree of successively simpler aspects 
or elements in arriving at sufficiently simple subsystems (of physics and/or geometry) to 
allow effective uncertainty characterization (whether through active testing or from 
suitable data available from the literature). Thus, as the graphic at the top of Figure A2 
indicates, even after separating the weapon from the fire we would strive for further 
complexity decomposition of the weapon response subproblem into aspects and tasks that 
we can reasonably expect to address in isolation, such as the foam 
decomposition/ablation model validation task described in Case Study #2 in Section 5 of 
this document. This case study will not only provide an opportunity for canonical model 
validation, but also for studying the effectiveness of invoking the complexity 
decomposition paradigm for isolated characterization then upward propagation of the 
findings for inference at higher modeling levels. 

Several requirements associated with systems level model validation are immediately 
apparent: 1) characterize the separability regime of the current application; 2) separate the 
problem as possible in a cascading manner, decoupling separable elements through 
"linking variables" that are maximally “orthogonal” with respect to the decoupling (see 
Romero, 2001 for examples); 3) propagate downward through inverse analysis individual 
“operational space” requirements (e.g. environmental boundary conditions) from the 
system level; 4) search the literature and design/perform experiments to obtain suitable 
validation data for the separated elements of the bigger problem; 5) use validation 
methodology and metrics to characterize modeling bias, and resolution uncertainty 
thereof; 6) propagate this uncertainty information upward to make inferences at higher 
levels. (As described in Romero, 2001, this last step can be quite convoluted, involving 
mapping out and inverting sometimes highly nonlinear functional relationships across 
separation interfaces, and sometimes transforming measured variables in the experiment 
into variables more conducive to upward propagation of the uncertainty information 
gained in the experiment.) 

 From this discussion, it is clear that systems engineering plays a very prominent role in 
systems-level model validation. We also make the observation that unvalidated models 
will unavoidably be used in the above procedures (for separability characterization, 
downward operational space mapping, experiment design and interpretation, bias and 
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uncertainty characterization in the separate model validation activities, and upward 
propagation of obtained uncertainty information). However, since many of these 
operations depend only on relative accuracy (accurate trend information with respect to 
the parameters in play) rather than on absolute predictive accuracy over the parameter 
space, the use of unvalidated models in the above operations may not be a significant 
detraction from the process. 

Returning to Figure A2, uncertainty distributions are also indicated for the threshold 
failure temperatures of the weak and strong links. These map through component 
response trajectories into uncertainties in their failure times. Failure temperature 
uncertainty can be caused by random unit-to-unit variabilities that can be correlated with 
the particular batch and/or manufacturer they come from. Failure temperatures can also 
depend significantly on heating rates, so the failure distributions must take this into 
account. Accordingly, experimentally and/or computationally determined component 
heating profiles in STS weapon heating environments of concern should be used to 
identify the correct boundary conditions in component failure characterization tests. 
Validated simulation models can also be used to design testing approaches and apparatus 
capable of applying the necessary component heating profiles, and in translating test 
results into measurable metrics for failure criteria, such as component outer case 
temperatures (see Romero and Thomas, 1993). Romero (1996) shows that realistic 
uncertainties in component failure temperatures can map to relatively large uncertainties 
in the failure times of the weak and strong links. As with uncertainty in thermal response 
profiles, decreasing the uncertainty of component failure thresholds can decrease the 
perceived vulnerability of a given weapon and therefore its thermal hardness 
requirements, which can result in significant cost savings in weapon design, testing, and 
production, as well as considerable improvements in weapon attributes. Hence, it is 
critical to use accuracy-validated thermal response models (both at system and 
component levels) in the planning and interpretation of component failure 
characterization tests. 

Uncertainty in the component response profiles and in their failure temperatures combine 
into resultant distributions in their failure times (depicted on the time axis in Figure A2). 
If the stronglink and weaklink failure-time distributions overlap to any extent, then there 
is some probability that the stronglink will fail before the weaklink (see the risk 
assessment methodology reports of Carlson et al. (1991) and Bohn (1996) for risk 
calculation procedures). Thus, given a particular heating scenario, a particular weapon 
system, associated component failure characteristics in the relevant heating regime, and 
associated physical and modeling uncertainties, the probability of LOAS can be estimated 
such that the weapon system can nominally be said to meet or not meet the safety 
qualification criterion of less than 10-Y probability of LOAS in the particular STS 
environment. 

 The estimation of risk probability is really the "forward" problem in a larger “reverse” or 
“inverse” design problem. The forward problem determines how "hard" the system is in a 
particular environment, whereas the reverse problem is to explicitly design the system to 
most cost effectively meet the 10-Y hardness requirement across all credible STS 
environments. 
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If an initially proposed design is analyzed and found not to surpass hardness requirements 
with sufficiently comfortable margins in one or more environments, then system and 
component designs can be iterated until the system does sufficiently exceed requirements. 
Alternatively, less modeling uncertainty in the problem translates into smaller projected 
widths of the weak and strong link time-to-failure distributions, and hence into smaller 
projected risk probability. Optimal design practice suggests that system and component 
design tradeoffs be considered along with uncertainty management and reduction 
possibilities in determining the most promising path toward cost effective satisfaction of 
problem constraints, requirements, and objectives. Analysis can reveal the reduction in 
projected risk that can be achieved by, say, a 10% reduction in modeling uncertainty.  
This benefit is then measured against projected costs for achieving this reduction in 
modeling uncertainty, as are similar-costing benefits associated with manipulating the 
system and/or component thermal hardness characteristics. Thus, tradeoffs in 
system/component design and characterization, and in M&S uncertainty reduction, are 
explicitly (numerically) assessed in top-level engineering planning and resource 
allocation to ultimately enable more rational management of the project toward project 
goals. 

Though in the past, no specific numerical accuracy requirements per se have been put on 
modeling and simulation accuracy in supporting weapon design and qualification, it is 
envisioned that in the future accuracy requirements may come in the form foreshadowed 
above: "if we can set a goal to contain modeling uncertainty to within some negotiable 
percentage about the nominal thermal response predictions, then we can include this 
tolerance in risk projections when iterating over system and component hardware options 
in early design stages." Currently, at the very least, a standing requirement exists to 
estimate simulation uncertainty in the forward problem of risk assessment. Toward this 
requirement, ASCI V&V plans (Romero et al., 2001; Tieszen et al., 2001) are being 
written to coordinate and integrate V&V and UQ activities with traditional M&S 
technology to precisely state how M&S uncertainty will be quantified and controlled in 
the WIAF problem. The implicit requirement beyond this is to reduce modeling 
uncertainty over time through wise application of resources, as determined through 
systems analysis that incorporates V&V and UQ technologies, to optimally identify, plan, 
and direct beneficial experimental, modeling, and code/algorithm development and 
assessment activities. 
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